ВВЕДЕНИЕ
Биологическая химия—это наука о молекулярной сущности жизни. Она изучает химическую природу веществ, входящих в состав живых организмов, их превращения, а также связь этих превращений с деятельностью клеток, органов и тканей и организма в целом.
Из этого определения вытекает, что биохимия занимается выяснением химических основ важней - ших биологических процессов и общих путей и принципов превращений веществ и энергии, лежащих в основе разнообразных проявлений жизни. Таким образом, главной задачей биохимии является установление связи между молекулярной структурой и биологической функцией химических компонентов живых организмов.В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и биохимию микроорганизмов. Несмотря на биохимическое единство всего живого, существуют и коренные различия как химического состава, так и обмена веществ в животных и растительных организмах. Обмен веществ, или метаболизм,— это совокупность всех химических реакций, протекающих в организме и направленных на сохранение и самовоспроизведение живых систем. Известно, что растения строят сложные органические вещества (углеводы, жиры, белки) из таких простых, как вода, углекислый газ и минеральные вещества, причем энергия, необходимая для этой синтетической деятельности, образуется за счет поглощения солнечных лучей в процессе фотосинтеза. Животные организмы, напротив, нуждаются в пище, состоящей не только из воды и минеральных компонентов, но содержащей сложные вещества органической природы: белки, жиры, углеводы. У животных проявления жизнедеятельности и синтез веществ, входящих в состав тела, обеспечиваются за счет химической энергии, освобождающейся при распаде (окислении) сложных органических соединений.
Растения, не использующие для своей жизнедеятельности вещества органической природы, называются аутотрофными организмами; животные являются гетеротрофными организмами.
Среди микроорганизмов встречаются как аутотрофы, так и гетеротрофы. Кроме того, для микроорганизмов характерным признаком считается наличие специфических химических веществ и реакций, не встречающихся в клетках животных и растений.Современная биохимия как самостоятельная наука сложилась на рубеже XIX и XX вв. До этого времени вопросы, рассматриваемые биохимией, входили в органическую химию и физиологию. Накопление фактического материала о составе наиболее сложных природных соединений началось с развитием в Европе в средние века алхимии. Однако фактические данные, полученные алхимиками, трудно отделить от неправильных обобщений и представлений, господствовавших в науке в то время. В XVI—XVII вв. воззрения алхимиков получили дальнейшее развитие в трудах ятрохимиков (от греч. 1а1го8—врач). Одним из виднейших представителей ятрохимии был немецкий врач и естествоиспытатель Т. Парацельс, который выдвинул весьма прогрессивное положение о тесной связи химии с медициной. Он считал, что в основе жизнедеятельности человека лежат химические процессы и причинной основой любого заболевания является нарушение «хода» химических процессов в организме. В связи с этим, по мнению Т. Парацель- са, для лечения следует использовать химические средства. К данному периоду относится и смелая для того времени идея И. Ван-Гельмонта
о наличии в «соках» живого тела особых веществ — «ферментов», участвующих в разнообразных химических превращениях.
В целом познание закономерностей химических и ферментативных процессов, лежащих в основе жизнедеятельности, оказалось для ятрохи- миков непосильной задачей. Это объясняется прежде всего отсутствием в то время знаний основных законов физики и химии, неразработанностью методов элементарного анализа органических соединений. Кроме того, ятрохимики, так же как и алхимики, по своему мировоззрению были метафизиками и придерживались виталистических взглядов.
В XVII—XVIII вв. широкое признание среди ученых получила теория горючего начала—флогистона, сформулированная немецким химиком и врачом Г.
Шталем. Несмотря на ошибочность основных положений, теория флогистона (объяснявшая процессы горения выделением из горящего тела особого невесомого вещества) сыграла в истории науки положительную роль, так как способствовала развитию экспериментального направления в химии. Опровержение этой теории связано с работами М. В. Ломоносова и А. Лавуазье, открывших в науке основные законы сохранения энергии и вещества, справедливые и для биологических объектов. Кроме того, А. Лавуазье показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ.С середины XVIII в. начинается период открытия и выделения большого числа новых органических веществ растительного и животного происхождения. Крупным событием второй половины XVIII в. стали исследования Л. Спалланцани по физиологии пищеварения, которые положили начало изучению ферментов пищеварительных соков. Русский химик К.С. Кирхгоф в 1814 г. описал ферментативный процесс осахаривания крахмала под влиянием вытяжки из проросших семян ячменя. К середине XIX в. были найдены и другие ферменты: амилаза слюны, пепсин желудоч-ного сока, трипсин сока поджелудочной железы. Й. Берцелиус ввел в химию понятие о катализе и катализаторах, к числу последних были отнесены все известные в то время ферменты. В 1839 г. Ю. Либих выяснил, что в состав пищи входят белки, жиры и углеводы, являющиеся главными составными частями животных и растительных организмов.
Сокрушительный удар по витализму был впервые нанесен работами Ф. Вёлера, которому в 1828 г. удалось получить химическим путем мочевину - один из конечных продуктов азотистого обмена у человека и животных. В письме к своему учителю Й. Берцелиусу Ф. Вёлер писал: «Я должен Вам заявить, что могу делать мочевину, не нуждаясь при этом в почках и вообще в животных, будь это человек или собака». Вскоре последовал и ряд других блестящих работ: синтез уксусной кислоты, осуществленный А. Кольбе (1845), жиров — М. Бертло (1854), углеводов—А.М. Бутлеровым (1861).
Эти работы неопровержимо продемонстрировали ошибочность и необоснованность виталистических представлений.В борьбе с витализмом очень важную роль сыграли исследования
о природе брожения. Л. Пастер ошибочно считал брожение биологическим процессом, в котором обязательно участвуют живые дрожжевые клетки. Автором чисто химической теории брожения был Ю. Либих, однако его теория была недостаточно разработана, имела умозрительный характер и не полностью объясняла ряд экспериментально установленных фактов. Важное значение имело получение строгих доказательств возможности брожения, не связанного с жизнедеятельностью клеток. Ясность была внесена, когда русский врач М.М. Манассеина (1871) и особенно четко немецкий ученый Э. Бухнер (1897) доказали способность бесклеточного дрожжевого сока вызывать алкогольное брожение.
Накопленные сведения о химическом составе растительных и животных организмов и химических процессах, протекающих в них, были впервые систематизированы в учебниках И. Зимона (1842) и Ю. Либиха (1847). В России первый учебник физиологической химии был издан А.И. Ходне- вым (1847).
Во второй половине XIX в. на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической, химии. В России первые кафедры медицинской химии были организованы в 1863 г. в Казанском университете А.Я. Данилевским и в Московском университете А.Д. Булыгинским. В 1892 г. начала функционировать кафедра физиологической химии в Военно-медицинской (Медико-хирургической) академии в Петербурге. Эту кафедру возглавлял А.Я. Данилевский. Создание кафедр физиологической химии в высших учебных заведениях было обусловлено тем, что во второй половине XIX в. биологическая химия стала выделяться в самостоятельную науку, имеющую свой предмет и методы исследования.
Подлинный расцвет биологической химии относится к XX в., когда важные открытия во многих ее областях следовали одно за другим. Биохимия открыла новые пути поиска с целью познания сущности биологических процессов, помогла человеку получить множество фактов о самом себе и условиях своего существования.
Последние годы характеризуются развитием методологических принципов и методических приемов исследования живой природы и накоплением фактических данных, позволивших изучать и объяснять метаболические процессы в биологии на молекулярном уровне.
Традиционный термин «биохимия», кажется, уже не в полной мере отражает профессиональную активность современных исследователей-био- химиков.
Несмотря на то что один из выдающихся биохимиков недавнего прошлого С. Очоа полагал, что молекулярная биология—это в сущности «биохимия без лицензии», многие в наши дни считают оба термина синонимами. Более того, созданы совместные национальные и международные научные общества, объединяющие биохимиков и молекулярных биологов. В ряде случаев кафедры называются кафедрами биохимии и молекулярной биологии. Все это имеет не только чисто академический, но и политический смысл, препятствующий возможности организации других кафедр и имеющий бесспорные преимущества при получении грантов. Помимо старых терминов «физиологическая химия», «физико-химическая биология», появилось много новых: в частности, «медицинская химия», изучающая химическую природу веществ, используемых с лечебной целью; «медицинская биохимия», основной целью которой является изучение структуры и обмена индивидуальных биомолекул в норме и при болезнях человека. Имеют права «гражданства» и такие названия, как «клиническая химия», «клиническая биохимия» и «химическая патология» (или «патобиохимия»), скорее всего, являющиеся синонимами и изучающие химические компоненты организма для использования их в клинической медицине. Наконец, появился совсем новый термин «молекулярная медицина» (даже в названиях учебников), цели и задачи которой остаются неясными. Надо ли в корне менять наши современные представления о структуре и функции биомолекул, сложившиеся в процессе изучения их в курсе биохимии и молекулярной биологии?Наиболее важными и приоритетными фундаментальными направлениями научных исследований в биохимии и молекулярной биологии являются генетическая инженерия и биотехнология, которым придается исключительное значение. Усилия ученых сосредоточены на создании и производстве препаратов для медицины (гормоны, ферменты, моноклональные антитела, биоактивные пептиды, вакцины, интерферон, простагландины и др.), сельского хозяйства (регуляторы роста растений, феромоны для борьбы с вредителями растений), промышленности (пищевые и вкусовые добавки).
Эта новая технология может решать ряд важных проблем в медицине (пренатальная диагностика болезней, генотерапия и др.).В настоящее время перед биологической наукой поставлена задача — обеспечить преимущественное развитие научных исследований по следующим основным направлениям: разработка методов генетической и клеточной инженерии, создание на их основе новых процессов для биотехнологических производств с целью получения принципиально новых пород животных, форм растений с ценными признаками; разработка новых методов и средств диагностики, лечения и профилактики наследственных заболеваний; разработка научных основ инженерной энзимологии; разработка и внедрение новых биокатализаторов (в том числе иммобилизованных) и оптимизация с их помощью биотехнологических процессов получения химических и пищевых продуктов; исследования структуры и функции биомолекул клетки; изучение молекулярных и клеточных основ иммунологии, а также генетики микроорганизмов и вирусов, вызывающих заболевания человека и животных, создание методов и средств диагностики, лечения и профилактики этих заболеваний; исследования молекулярно-биологиче-ских механизмов канцерогенеза, природы онкогенов и онкобелков, их роли в малигнизации клеток и создание на этой основе методов диагностики и лечения опухолевых заболеваний человека; исследования проблем биоэнергетики, питания, психики и молекулярных основ памяти и деятельности мозга. Таким образом, можно наметить следующие главные направления развития исследований в области биологической химии на ближайшую и отдаленную перспективу, так называемые горизонты биохимии:
Дифференцировка клеток высших организмов (эукариот).
Организация и механизм функционирования генома.
Регуляция действия ферментов и теория энзиматического катализа.
Процессы узнавания на молекулярном уровне.
Молекулярные основы соматических и наследственных заболеваний человека.
Молекулярные основы злокачественного роста.
Молекулярные основы иммунитета.
Рациональное питание.
Молекулярные механизмы памяти.
Биосинтез белка.
Биологические мембраны и биоэнергетика.
Основное назначение биологической химии сводится к тому, чтобы решать на молекулярном уровне задачи фундаментальные, общебиологические, включая проблему зависимости человека от экосистемы, которую необходимо не только понимать, но защищать и научиться разумно ею пользоваться.
Еще по теме ВВЕДЕНИЕ:
- ВВЕДЕНИЕ
- Парацетамол:три способа введения
- ВВЕДЕНИЕОсновные характеристики анестезии в торакальной хирургии
- МЕТОДЫ ВВЕДЕНИЯ ПРЕПАРАТОВ
- ПОБОЧНЫЕ РЕАКЦИИНА ВНУТРИВЕННОЕ ВВЕДЕНИЕАНЕСТЕТИКОВ
- ГЛАВА 65НЕБЛАГОПРИЯТНЫЕ РЕАКЦИИ НА ВВЕДЕНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ
- Глава 24ТЕХНИКА ВВЕДЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ
- Часть IВведение в инфекционную патологию
- ГЛАВА 8Введение прикорма
- КОМПОНЕНТ 4: ЛЕЧЕНИЕ ОБОСТРЕНИЙ БРОНХИАЛЬНОЙ АСТМЫВВЕДЕНИЕ
- 16.2. Введение лекарственных средств
- ВВЕДЕНИЕОБЩИЕ ТЕХНИКИ