<<
>>

Гигиеническое значение атмосферного воздуха

Атмосфера — это газовая оболочка Земли массой почти 5,157 х 1015 т, а масса нашей планеты составляет 5,98 х 1021 т. В атмосфере различают не-сколько слоев: тропосферу и стратосферу, разделенные переходным слоем — тропопаузой, а также мезосферу (от стратосферы отделяется стратопаузой), ионосферу и термосферу.

Внешняя часть термосферы называется магнитосфе-рой. В ней частицы газов (ионы) удерживаются не столько земным притяже-нием, сколько магнитным полем Земли.

Кроме того, атмосферу разделяют на нижнюю (до 30 км — тропосфера и тропопауза), среднюю (от 30 до 100 км — стратосфера, мезосфера и мезопауза) и верхнюю (свыше 100 км — ионосфера и термосфера).

В тропосфере (в переводе с греч. "тропейн" означает — поворачивать, или изменять) сосредоточено почти 80% всей массы атмосферы. Простирается она от поверхности Земли на 16,3 км в тропиках (30° северной широты и до 30° южной широты) и на 8,5—10 км вне этой зоны. В тропосфере температура снижается с увеличением высоты с вертикальным градиентом 6,5 °С на 1 км, достигая в средних широтах 60 °С, в тропиках — почти 75 °С. В тропосфере происходят основные процессы превращения энергии Солнца в кинетическую энергию атмосферных движений, скрытое тепло водяного пара. Здесь протекают главные фазовые перепады влажности, формируются тучи и осадки. В тропосфере возникают масштабные вихри — циклоны и антициклоны, происходит непрерывный круговорот воды: испарение — конденсация пара — формирование осадков — формирование поверхностного стока рек и подземного стока.

Нижний смежный слой атмосферы толщиной 1,0—1,5 км называют планетарным смежным, определяющим фактором которого является турбулентное трение. В этом слое происходит обмен импульсом, теплом и влагой между под-стилающей поверхностью (поверхностью суши и океана) и атмосферой. Наи-более активны эти процессы в нижней части планетарного смежного слоя тол-щиной почти 30—50 м.

Этот слой называется приземным.

Переходный слой (тропопауза) отделяет тропосферу от стратосферы. В тропопаузе наблюдаются очень слабые вертикальные движения, перемешивание, что важно, в частности, для распределения в стратосфере незначительных газовых примесей. Температура низкая.

Стратосфера, содержащая наибольшую часть атмосферного озона, очень сухая. В отличие от тропосферы стратосфера является очень стойким слоем. Соединения, попадающие в стратосферу, остаются в ней несколько лет. На высоте более 35 км температура заметно возрастает и на высоте 50 км она составляет 270 К. Это обусловлено поглощением солнечной УФ-радиации.

Над стратосферой расположена мезосфера, отделенная от стратосферы стратопаузой. В мезосфере температура воздуха снижается с увеличением высоты и достигает 160 К в верхней ее части. Это способствует конденсации водяного пара и образованию на высоте почти 80 км так называемых мезосфер- ных туч.

Мезопауза, расположенная на высоте 85 км, отделяет мезосферу от термо-сферы, в которой температура начинает резко возрастать с высотой до 2000 К в периоды большой и до 1060 К — малой солнечной активности (ночью — до 1300 и 730 К соответственно).

В термосфере (на высоте более 100 км) существенно изменяется состав воздуха: распадаются молекулы Н20 и С02. Значительная часть молекул кислорода диссоциирует на атомы. В этом слое усиливается ионизация частиц газов и возникает так называемый слой ионосферы.

Таким образом, нижняя атмосфера как неотъемлемая часть биосферы является воздушной средой земной жизни. Ученые в старину считали окружающий воздух одной из составных частей Вселенной. Древнегреческий философ Анаксимен в IV в. до н. э. называл воздух первоматерией, а Аристотель — одним из четырех элементов, из которых состоят все вещества в природе. Гиппократ писал: "Воздух — это пастбище жизни". Если человек без воды может прожить почти 5 сут, без еды — 5 нед, то без воздуха — лишь 5 мин. И если он употребляет в сутки до 3 л воды, до 3 кг продуктов, то через сотни миллионов альвеол легких площадью 60—120 м2 проходит 10—12 м3 воздуха в сутки, или 1 000 000 м3 — при жизни.

За 1 мин человек делает 18 дыхательных движений, вдыхая каждый раз 0,5 л воздуха. И это в положении сидя или лежа, без физической нагрузки. А если он физически работает, то ему в сутки необходимо до 30 м3 воздуха. Дыхательная система человека — самый совершенный фильтр, который очищает вдыхаемый воздух, отделяет твердые и жидкие примеси. В носовой полости улавливаются лишь грубые частицы пыли. Частицы пыли диаметром 10 мкм оседают в бронхах, а еще меньшие (10—0,1 мкм) — в альвеолах. Из каждого литра вдыхаемого воздуха в легких задерживается 0,5 мг чужеродных веществ, что составляет 6,5 г/сут. Легкие — это открытые ворота во внутреннюю среду организма, где происходит контакт воздуха с кровью. В крови растворяются вещества, которые она разносит по организму. При этом кровь минует печень, этот естественный барьер дезинтоксикации. Поэтому вредные вещества, поступающие через легкие, действуют в 100 раз сильнее, чем поступающие через пищеварительный канал. И если человек может выбирать питьевую воду и еду, то он не может выбрать воздух. Атмосферный воздух влияет на человека непрерывно. Если даже в атмосферном воздухе насе-

ТАБЛИЦА 56

Состав сухого воздуха (без учета водяного пара) вблизи поверхности Земли Газ Доля* по объему вблизи поверхности Относительная молекулярная масса (по углеродной шкале) Плотность относительно плотности сухого воздуха Азот (N2) 78,084 28,0134 0,967 Кислород (02) 20,084 31,9988 1,105 Аргон (Ar) 0,934 39,948 1,379 Углерода диоксид (С02) 0,033 44,00995 1,529 Неон (Ne) 1,818 х 10"3 20,183 0,095 Гелий (Не) 5,239 х \0л 4,0026 0,138 Криптон (Кг) 1,14 х 10л 83,800 2,868 Водород (Н2) 5 х Ю-5 2,01594 0,070 Ксенон (Хе) 8,7 х 1(Н 131,300 4,524 Озон (03) 10-6—10-5 47,9982 1,624 Сухой воздух — 28,9645 1,000 * Выраженное впроцентах отношение объема этой составляющей части к общему объему смеси при одинаковых давлении и температуры.

ленного пункта содержится в соответствии с гигиеническими нормами, например, от 3 до 5 мг/м3 углерода оксида, то человек на протяжении жизни вдохнет 3 000 000—5 000 000 мг углерода оксида, или 3—5 кг.

Человек предъявляет высокие требования к составу атмосферного воздуха. Чем чище воздух, тем полнее усваивается организмом кислород, активнее происходит газообмен в его тканях.

Продолжительное время считали, что воздух состоит из однородного ве-щества. И только во второй половине XVII в. французский химик Антуан Ла-вуазье установил, что воздух — это сложная смесь газов (табл. 56).

Шотландский ученый Резерфорд открыл газ, который он назвал азотом. Азот играет важную роль в круговороте веществ в природе. Азот воздуха усваивается некоторыми видами бактерий (клубеньковыми, азотфиксирующи- ми) и сине-зелеными водорослями, которые синтезируют из него азотистые органические соединения. Под влиянием атмосферных разрядов электричества также образуется небольшое количество азота оксидов, вымывающихся из атмосферы осадками и обогащающих почву солями азотистой и азотной кислот. Соли азотистой кислоты превращаются при участии почвенных бактерий в нитраты. Нитраты и соли аммиака — соединения, усваивающиеся растениями и принимающие участие в синтезе белков. Ежегодно связывается 375 х 106 т атмосферного азота: 357 х 10б т ассимилируется живыми организ-мами, а 18 х 106 т связывается в результате физических явлений. Часть азотистых веществ распадается с восстановлением до газообразного азота (процесс денитрификации). В процессе горения связанный азот превращается в свободный. Биологическое значение азота не ограничивается его участием в круговороте азотистых веществ. Он также разбавляет кислород, так как (в чистом кислороде жизнь невозможна).

Шведским химиком Шееле в конце XVIII в. был выделен кислород. Кислород — это составная часть органических веществ, в частности белков, жиров, углеводов. В природе непрерывно происходят процессы потребления кислорода: дыхание человека и животных, процессы горения и окисления. В то же время наблюдаются и обратные процессы. Наиболее важным из них является фотосинтез. Растения поглощают углерода диоксид, расщепляют его и усваивают углерод, а освобожденный кислород выделяют в атмосферу.

Источником образования кислорода является также фотохимическое разложение водяного пара в верхних слоях атмосферы под действием ультрафиолетового излуче-ния Солнца. Затем в воздухе были выявлены углерода диоксид, водяной пар, а в конце XIX в. — инертные газы.

Углерода диоксид образуется вследствие жизнедеятельности организмов, процессов горения, гниения, брожения. При снижении парциального давления углерода диоксида он выделяется из воды морей и океанов. Углерода диоксид ассимилируется растениями в процессе фотосинтеза, а освобожденный кислород поступает в атмосферу. Он также играет важную роль в радиационном балансе и изменении климата Земли. Установлено, что свыше 100 млрд т органических веществ образует растительность Земли вследствие фотосинтеза, в процессе которого усваивается почти 200 млрд т углерода диоксида и выделяется 145 млрд т кислорода.

Инертные газы не вступают в химические реакции. Водород непрерывно поступает в межпланетное пространство. Некоторое его количество образуется во время фотохимических процессов. Он входит в состав органических ве-ществ и усваивается живыми организмами в виде соединений, главным образом воды. В процессе распада органических веществ выделяется в виде воды, метана, сероводорода, аммиака.

Озон является важной составной частью верхних слоев атмосферы. Образуется преимущественно на высоте почти 30 км, где солнечная УФ-радиация с волной длиной не менее 242 нм вызывает диссоциацию молекулярного кислорода (02) с образованием атомарного кислорода (О). Последний быстро взаимодействует с молекулярным кислородом, образуя озон. В нижних слоях атмосферы озон образуется вследствие адсорбции солнечной радиации азота диоксидом. Большая его часть содержится в стратосфере в виде слоя с максимумом концентрации (иногда до 300 мкг/м3) на высоте 20—26 км. Общее содержание озона в столбе атмосферы эквивалентно 0,20—0,67 см слоя озона при нормальных давлении и температуре. Концентрация озона в атмосфере районов, отдаленных от источников загрязнения, достаточно постоянна, и ее колебания зависят от сезона и метеорологических условий.

Среднемесячная концентрация озона в зависимости от широты местности и периода года может колебаться в пределах 10—80 мкг/м3. Озоновый слой поглощает коротковолновое ультрафиолетовое излучение Солнца (длина волны 240—320 нм).

По данным табл. 56, на долю трех основных газов (N2,02и Ar) приходится 99,96% массы атмосферы, а на долю остальных — лишь 0,04%. Эти газы содержатся примерно в постоянном соотношении на высоте 100 км. Могут ли изменяться природный состав атмосферного воздуха и соотношение названных вы- ше газов? Обратимся к хронике развития промышленности как в нашей стране, так и за рубежом. Технический прогресс, развитие разных отраслей промышленности, транспорта, химизация сельского хозяйства, строительство городов обусловили появление в атмосферном воздухе таких чужеродных ингредиен-тов, как свинец, марганец, фтор, мышьяк и др. Задымление промышленных городов приобрело значение фактора санитарного неблагополучия, что неблагоприятно повлияло на здоровье населения и ухудшило санитарно-бытовые условия жизни. Острой стала проблема санитарной охраны атмосферного воз-духа населенных мест. Проводить исследования в этой отрасли начали после организации кафедр гигиены на медицинских факультетах университетов. Первую такую кафедру организовал А.П. Доброславин в Петербургской медико- хирургической академии в 1871 г. Он основал и первую гигиеническую лабораторию для проведения экспериментальных исследований. В этот период земскими санитарными врачами были обследованы фабрики, заводы, исследованы условия жизни рабочих. Ученые и практики впервые указали на зависимость заболеваемости населения от загрязнения атмосферного воздуха. Эта проблема переросла рамки местной и приобрела статус региональной и международной. Случаи массовых отравлений населения в промышленно развитых странах атмосферными загрязнениями привлекли внимание мировой общественности, ученых-гигиенистов. Так, в декабре 1930 г. в Бельгии, в долине реки Маас длиной 24 км, где между холмами высотой 75—120 м расположены сталелитейные, цинкоплавильные производства, заводы по изготовлению стекла, серной кислоты и минеральных удобрений, печи для обжига извести, в результате антициклона, сопровождавшегося с высоким барометрическим давлением, слабым ветром и температурной инверсией, образовался туман с запахом сернистого газа. Туман появился 1 декабря и продолжался 5 сут. Вскоре местные жители начали жаловаться на недомогание. Действие высоких концентраций серы диоксида и твердых аэрозолей привело к затруднению дыхания, раздражению слизистых оболочек носа, горла, глаз. Резь в глазах, насморк, сухой кашель, астения, тошнота, головная боль, мышечные судороги переходили в ка-шель с выделением мокроты. Бронхоспазм заканчивался удушьем. В течение 5 сут содержание серы диоксида превышало ПДКср в 40—80 раз. На 4-е сутки появились первые сообщения о летальных случаях. Заболели несколько сотен человек, из них 60 умерли. Среди пострадавших преобладали дети и люди пожилого возраста с хроническими процессами в дыхательных путях и поражением сердечно-сосудистой системы.

Вскоре после этого, в январе 1931 г., за 9 сут задымления в районе Манчес-тера и Солфорда (Англия) умерли 592 человека. Очередная катастрофа случилась в октябре 1948 г в г. Донора (штат Пенсильвания, США), расположенном на берегу реки Мононгахила, на дне глубокой долины, которая лежит на 150 м ниже окружающей территории с химическими и сталеплавильными заводами. 26 октября над Западной Пенсильванией образовались температурная инверсия и область высокого давления. По наблюдениям летчиков, инверсионный слой локализовался на высоте менее 300 м над городом. Ветры в нижних 800 м атмосферы были очень слабые. Ночью образовался туман. Промышленные за- грязнения сконцентрировались между склонами долины и инверсионным сло-ем. На 4-е сутки началось массовое поражение дыхательных путей у жителей города. За 5 сут задымления заболела почти половина из 14 тыс. населения. Двадцать человек умерли. Очень тяжелое течение болезни наблюдалось у людей с бронхиальной астмой, хроническим бронхитом и сердечной недостаточностью. В процессе расследования этиологческим фактором был признан серы диоксид.

Весь мир потрясла трагедия, случившаяся в 1952 г. в Лондоне в долине Темзы. За 2 нед во время тумана умерли 2,5 тыс. человек, а когда туман рассеялся общее количество летальных случаев превысило 4 тыс. В период тумана содержание сажи по сравнению со средним уровнем возросло в 5 раз, серы диоксида — в 6 раз. Основными загрязнениями атмосферы, которые вызвали массовое поражение людей, были признаны продукты сгорания угля и его производные. Подобные случаи наблюдались в Лондоне, начиная с 1873 г. Свидетели так описывают изменения атмосферы в Лондоне, которые произошли с 3 по 9 декабря 1952 г.:

"3 декабря на город надвинулся холодный фронт, и в полдень температура снизилась до 6 °С, относительная влажность воздуха была почти 70%, ветер северный, слабый. В небе наблюдали скученные облака. Для 4 декабря были характерны антициклон, облачность, снижение температуры до 3 °С, увеличение относительной влажности до 82%. В воздухе чувствовался запах дыма. Из-под тысяч дымовых колпаков тихо поднимались в воздух недогоревшие остатки угля — горючие газы, копоть и зола. Крупные частицы сажи падали на крыши, улицы, шапки и пальто прохожих. Мелкие частицы золы летали в небе, попадая в жилища. 5 декабря над городом был центр области высокого давления. Ветер утих. Туман ухудшил видимость. Температура достигла 0 °С, относительная влажность — 80%. Запах дыма усиливался. Нижний слой атмосферы до километра вверх был насыщен дымом и влагой. 6 декабря плотный туман закрыл небо, температура снизилась до -2 °С, а влажность воздуха составляла 100%. Видимость не превышала 10 м. Анемометры зарегистрировали полный штиль. Воздух над городом оставался практически неподвижным, и дым от печей, топок и каминов наполнял его ядовитыми веществами. Капельки тумана захватывали из дыма газы и твердые частицы, образуя смесь дыма и тумана, которую назвали смогом. Город погрузился в смог, в облако вредных для всего живого отходов. У жителей болели и слезились глаза, грудь разрывал лающий кашель. Смог свирепствовал 7 и 8 декабря. Лондонские больницы переполнились потерпевшими. Многие люди умерли. Кроме тех лондонцев, для которых смог стал фатальным, у многих тысяч обострились болезни или впервые возникли нарушения органов дыхания. Это было массовое отравление, ко-торое вызвали метеоусловия и загрязнение атмосферного воздуха" (табл. 57).

Аналогичные ситуации зафиксированы в Нью-Йорке в течение 1950—1960 гг. При этом смертность населения возросла на 4—20%. Случаи раздражения органов дыхания, проявляющегося астматическим компонентом, вследствие загрязнения атмосферного воздуха наблюдали в 1946 г. в Иокогаме (Япония). Прояв-ления "иокогамской астмы" прекратили после переселения больных в районы

ТАБЛИЦА 54 Показатели смертности населения в Лондоне Месяц и год Абсолютный прирост

смертности, % Среднесуточная

3

концентрация, мг/м Твердые аэрозоли Серы диоксид Ноябрь 750 2,780 2,150 (1948) Декабрь 4000 4,460 3,830 (1952) Январь 1000 2,830 1,430 (1953) Январь 250 1,723 3,335 (1956) Декабрь 700 3,144 3,843 (1962) с чистым воздухом. В 1950 г. такое явление наблюдалось в Поза- Рике (Мексика), в 1952 г. — в Валь- суме (Германия), в 1958 г. — в Новом Орлеане (США).

Термин "смог" происходит от англ. smoke — дым и fog — туман. Это система, которая образуется в результате взаимодействия природного тумана с газовыми промышленными выбросами. В свою очередь, дым — это аэродисперсная система, состоящая из частиц с небольшой упругостью пара и малой скоростью седиментации под действием силы веса. Туман — капли жидкости, образующиеся вследствие конденсации пара или распыления жидкости. Смог лондонского типа(син.: черный смог, восстановительный смог) образуется в больших промышленно развитых городах (чаще всего в декабре-январе) утром во время штиля при температуре воздуха от -1 °С до 4 °С, относительной влажности воздуха более 85%, температурной инверсии, высокой концентрации серы диоксида и сажи. Для него характерна низкая дальность видимости, которая достигает иногда 30 м и менее.

В начале 40-х годов XX в. в некоторых городах Америки, в частности в Лос-Анджелесе, начали наблюдать фотохимические туманы. Бассейн Лос- Анджелеса, расположенный на побережье Тихого океана, на Востоке и Севере закрыт горами. Вдоль берега дуют слабые западные и юго-западные бризы. Ветры несут воздух к горам, где он и задерживается. Лос-Анджелес находится в зоне высокого давления, которую называют тихоокеанским антициклоном. На высоте почти 600 м образуется температурная инверсия. Этот калифорнийский город когда-то славился чистым воздухом, мягким климатом и роскошной растительностью. Ныне в нем "господствует" ядовитый туман, разъедающий глаза. Его так и называют — "лос-анджелесский смог"(син.: фотохимический туман, окислительный смог, белый смог). Это белесый туман, который иногда приобретает желто-коричневый цвет. Образуется (чаще всего в августе-сентябре) в ясный солнечный день в полдень при температуре воздуха от 24 °С до 32 °С, относительной влажности — до 70%, температурной инверсии, загрязнении атмосферного воздуха выхлопными газами автотранспорта. Под действием ультрафиолетового излучения углеводы и азота оксиды в присутствии озона вступают в цепные химические реакции, образуя сложные высокоактивные соединения типа пероксиацетилнитрата, пероксибензоилнитра- та, пероксипропионилнитрата, которые оказывают неблагоприятное действие на органы дыхания и раздражают глаза.

Проблема фотохимического смога существует и в таких больших городах, как Токио, Сидней, Мехико, Буэнос-Айрес и др. В 1974 г. летом в Японии почти все префектуры вдоль побережья были окутаны фотохимическим смогом. Правительство страны опубликовало список районов (11) наибольших японских городов, где загрязнение воздушного бассейна достигло опасного для жизни уровня, и среди них на первом месте был Токио. Его называют "задыхающимся городом". В июле 1970 г. из-за фотохимического смога попали в больницу свыше 8 тыс. токийцев. Жители Мюнхена не без оснований говорят, что когда над всей Баварией светит солнце, небо в их городе окутано тучами ядовитых испарений угарного газа, сажи, угольной пыли. Жители Парижа спешат хотя бы ненадолго оставить город, лишь бы вдохнуть свежий воздух в предместьях. Французская пресса пишет: "Возможно, Париж и является сердцем Франции, но отнюдь не ее легкими. В этом нет ничего удивительного, так как ежедневно в воздух этого города автомашины выбрасывают одного только свинца почти 40 т".

Гигиенисты установили связь между промышленными выбросами в атмо-сферный воздух и повышением заболеваемости населения бронхитом, брон-хиальной астмой, эмфиземой легких, злокачественными новообразованиями, хронической пневмонией, аллергией и увеличением числа случаев рефлектор-ных реакций, обусловлено пахучими веществами. По данным ВОЗ, в Велико-британии ежегодно регистрируют почти 30 тыс. летальных случаев. Характерно, что смертность от хронического бронхита в некоторых странах Европы и Америки в течение десятилетий неуклонно возрастает, прежде всего Германии и США, где за последние 5 лет она повысилась в среднем на 25%. В Швейцарии с каждым годом количество заболеваний, вызванных загрязнением атмосферного воздуха, возрастает. В частности, за последние 10 лет смертность от бронхита, бронхиальной астмы и эмфиземы в этой стране увеличилась на 19%. Наиболее восприимчивы к загрязнению атмосферного воздуха дети. По данным ВОЗ, с 1956 по 1986 г. почти у 4% новорожденных были зарегистрированы наследственные болезни. Причем частота врожденных пороков в городах была в 2 раза больше, чем в селах. Указанной проблемой стали заниматься созданные санитарно-эпидемиологические станции, гигиенические научно-исследовательские институты, научные общества разных стран мира. Ее обсуждают на съездах, симпозиумах, конгрессах. Принят ряд национальных и международных программ, разработаны программы для регулярного контроля качества воздуха, наблюдения и оценки взаимосвязи между загрязнением воздуха и здоровьем людей. В 1973 г. ВОЗ создала глобальную систему мониторинга окружающей среды (ГСМОС), в частности воздушного бассейна, в которой приняли участие около 50 стран мира. Данные, полученные в результате деятельности национальных систем и осуществления ГСМОС, выявили общие тенденции в изменении качества воздуха в странах мира. В нашей стране была создана автоматизированная информационная система "Окружающая среда — здоровье населения". Программы исследований расширялись, требовали ре-шения новые вопросы: исследование источников загрязнения воздуха; изуче-ние закономерностей распространения загрязнений в воздушном бассейне, ме- ханизма их трансформации; прогнозирование влияния "парникового эффекта", "кислотных дождей" на здоровье и санитарно-бытовые условия проживания населения; изменение озонового слоя; разработка законодательных, техноло-гических, технических, планировочных мероприятий в области санитарной охраны атмосферного воздуха; научное обоснование принципов и методов ги-гиенического нормирования вредных веществ в атмосферном воздухе.

Если несколько десятилетий назад уничтожение стратосферного озона хлорфторуглеводородами и возрастание "парникового эффекта" было дискус-сионной научной гипотезой, то в настоящее время разрушение озонового слоя и изменение климата стали действительностью. Об этом свидетельствуют публикации: "Озоновый щит под угрозой", "Озоновая дыра над Арктикой", "Что беспокоит гренландцев", "Почему меняется климат", "У порога экологического апокалипсиса", " 160 стран мира начинают борьбу с потеплением" и т. п.

Установлено, что в XX в. средняя температура воздуха на Земле повысилась на 0,5—0,6 °С. Направленная к верхней границе земной атмосферы солнечная радиация, которую оценивают как солнечную постоянную, равна почти 1,95 кал/(см2 • мин). Максимум интенсивности радиации приходится на длину волн в диапазоне от 0,4 до 0,8 мкм, что составляет видимую часть спектра электромагнитных волн. Приблизительно 42% энергии поглощается в верхней атмосфере, отражается облаками, земной поверхностью в пространство или поглощается облаками и водяным паром. Почти 47% солнечной радиации поглощает земная поверхность воды и суши. Сама Земля, аппроксимированная телом с температурой 290 К, излучает длинноволновую радиацию с максимумом интенсивности между 4 и 12 мкм. Большая часть радиации поглощается водяным паром и углерода диоксидом у поверхности земли. Поскольку и водяной пар, и углерода диоксид пропускают большую часть солнечной радиации, но поглощают длинноволновую радиацию земной поверхности, возникает эффект, который приводит к нагреванию атмосферы и зависит от количества углерода диоксида и водяного пара в атмосфере. Этот эффект получил название парникового.

Исследования 80-х годов XX в. показали, что некоторые другие газы, в част-ности хлорфторуглеводороды, метан и азота закись, также могут изменять способность атмосферы поглощать инфракрасное излучение. С другой стороны, вследствие роста промышленного производства во всем мире увеличиваются выбросы в атмосферу аэрозольных частиц. Наличие аэрозольных частиц в атмосфере приводит к уменьшению солнечной радиации, попадающей на земную поверхность. Этот эффект является причиной обратного действия по срав-; нению с влиянием увеличения в атмосфере количества углерода диоксида и водяного пара. Если с 1890 по 1945 г. средняя температура атмосферы повысилась на 0,9 °F, то с 1945 по 1972 г. она уменьшилась на 0,6 °F. Средняя температура в ледниковый период отличалась лишь на 7 °F от температуры в самые теплые периоды многомиллионной истории Земли. В одной из американских моделей "Мир в 2000 году" приведено пять климатических прогнозов на будущее: "сильное глобальное похолодание", "умеренное глобальное похолодание" "сохранение условий последних 30 лет", "умеренное глобальное потепление", "сильное глобальное потепление".

На международной конференции, состоявшейся в 1985 г. в австралийском городе Филлахе, ученые не одобрили американской модели и сошлись на том, что предвидится потепление климата. По прогнозу, при современном уровне накопления газов, которые создают парниковый эффект, температура земной поверхности до 2100 г. повысится на 3,5 °F. При этом она увеличится главным образом в северных широтах. Начнут таять большие участки северных ледников, участятся дожди и снегопады. С потеплением повысятся объемы испарений воды. В отчете межправительственной комиссии ООН в отношении климатических изменений указано, что если выбросы углерода диоксида будут возрастать на 10—20% каждые 10 лет, то будут наблюдаться необратимые последствия.

До 2097 г. на восточном и западном побережье Африки будут бушевать циклоны. Большинство экосистем и организмов не смогут адаптироваться к новым климатическим условиям. Жара усилится.

Побережья Сенегала, Сьерра-Леоне, Нигерии, Габона, Камеруна и Анголы окажутся под водой. В Европе радикальные изменения произойдут на севере и юге. Зимой северные районы будут заливать дожди, а на юге ожидается засуха. Побережья Голландии, Германии, Украины и России будут частично залиты водой. Исчезнут ледники в Альпах. На континент Латинской Америки обрушатся бури и ураганы. На побережье Австралии и островах Тихого океана бу- ТАБЛИЦА 58 Хлорфторуглеводороды, вызывающие разрушение озона в атмосфере Фреоны Продолжи-тельность пребывания в атмосфере, годы Объем выбросов в мире, тыс. тонн Влияние на разру-шение озона, % Фреон-12 120 412 44,7 (CF2CI2) Фреон-11 70 238 25,8 (CFClj) Фреон-113 90 183 11,7 (C2C13F3) Фреон-22 22 72 0,4 (CHF2C1) Хлорметан 67 66 7,6 (ССЦ) Метилхлоро- 6 474 5,1 форм (СН3СС13) На-1211 12—15 3 0,9 (CF2C!Br) На-1301 12—15 3 3,7 (CF3Br)

дут свирепствовать циклоны, нач-нется засуха. На Международной конференции по проблемам кли-матических изменений на Земле, состоявшейся в 1998 г. в Киото, представители 160 стран мира под-писали соглашение. Были установлены лимиты на выбросы промышленных газов, которые создают "парниковый эффект".

До 2008 г. страны ЕС обязались уменьшить объем выбросов в атмосферу по сравнению с 1990 г. на 8%, США — на 7%, Япония — на 6%. Другие индустриально развитые страны из 38 присутствующих на конференции сократят эмиссию углерода диоксида на 5%.

Последствием экологического прессинга является и образование озоновых дыр. Ученые установили, что ведущую роль в разрушении озонового слоя играют хлорфторуглеводороды. Это соединения, состоящие из С, Cl, F(Br), были синтезированы в 20-х годах XX в. В наше время хлорфторуглеводороды (фреоны) широко используют как наполнители аэрозольных баллончиков, хладагенты в установках и кондиционерах, в производстве пластмасс, в электронной про-мышленности. Ежегодно в атмосферу выбрасывается почти 1 млн т различных хлорфторуглеводородов (табл. 58).

Впервые озоновая дыра площадью 4 000 000 км2 и глубиной 8 км была обнаружена со спутника в 1985 г. В 1987 г. сообщили о подобной озоновой дыре на меридиане Шпицбергена между Скандинавией и Северным полюсом. Было установлено, что за последние десятилетия слой озона уменьшился на 3% над Северным полюсом и вдвое — над Антарктидой. Ученые считают, что потеря 1% озона приводит к увеличению числа случаев онкологических заболеваний кожи на 6%.

В чем же состоит химизм взаимодействия хлорфторуглеводородов с озоном? Хлорфторуглеводороды (на примере фреона-12) под влиянием ультра-фиолетового (УФИ) излучения высвобождают химически активный атом хлора в результате реакции:

CF2CI2+ УФИ = CI + CCIF2.

Химически активный атом хлора переходит в стратосферу, где взаимодействует с озоном:

CI + 03= СЮ + 02.

Эта реакция происходит в течение нескольких секунд. Установлено, что один атом хлора разрушает почти 100 000 молекул озона. В свою очередь оксид вступает в реакцию в атомарным кислородом, вследствие чего образует-ся активный атом хлора. Эти реакции повторяются, образуя цепную реакцию. Последняя заканчивается или прерывается после связывания хлора или перемещения его из стратосферы в тропосферу и вымывания атмосферными осадками. Такие бромированные фторуглеводороды, как галон-1310 (CBrF3) и галон-2402 (CBrF2), еще в большей мере разрушают озон стратосферы. В стратосфере атом брома, который освобождается под действием ультрафиолетового излучения, вступает в цепную реакцию разрушения озона. В начале 70-х годов XX в. возникла обеспокоенность из-за возможности разрушения озона азота оксидами, которые выбрасывают сверхзвуковые самолеты на высоте 17—20 км. Они могут вызвать также цепные реакции с разрушением озона так же, как и С10х. Первым шагом на пути к ограничению выбросов хлор-фторуглеводородов в атмосферу было принятие в марте 1985 г. в Вене Конвенции Объединенных Наций по защите стратосферы. В протоколе, подписанном в Монреале в августе 1987 г., сформулировано положение об уменьшении выбросов хлорфторуглеводородов. Оценки, сделанные научной группой эколо-гической программы ООН, свидетельствуют о необходимости прекратить выброс этих веществ в атмосферу. Те газообразные хлорфторуглеводороды, которые уже попали в атмосферу, имеют средний период пребывания почти 100 лет. Так, из имеющихся в атмосфере молекул фреона-12 почти 37% будут находиться в ней до 2100 г., 15% — до 2200 г., 6% — до 2300 г. Если производ- ство хлорфторуглеводородов прекратится до 2000 г., то максимальное разру-шение озона произойдет в 2020 г.

Большое значение для охраны воздушного бассейна от техногенного загрязнения имеет гигиеническое нормирование вредных веществ в атмосферном воздухе. Приоритет в этой области за отечественной наукой. Первые нормативы ПДК вредных веществ в атмосферном воздухе были утверждены в 1951 г. Известный ученый-гигиенист В.А. Рязанов разработал принципы нормирования и критерии вредности атмосферных загрязнений. На основании работ оте-чественных ученых-гигиенистов разработан, утвержден и используется ряд директивных, нормативных, инструктивно-методических документов. В этих документах подчеркивается, что проведение санитарно-гигиенических мероприятий, направленных на сохранение благоприятного состояния атмосферно-го воздуха, обеспечение наилучших условий жизни людей, труда, быта, отдыха и охраны здоровья, дальнейшего развития материального производства и культуры, является обязанностью всех государственных органов, предприятий и учреждений.

Санитарная охрана атмосферного воздуха — это комплекс законодательных, научных, технологических, технических и планировочных мероприятий, на-правленных на сохранение, улучшение, восстановление состояния атмосфер-ного воздуха и предупреждение вредного влияния атмосферных загрязнений на здоровье и санитарно-бытовые условия проживания населения.

Под загрязнением атмосферного воздуха понимают изменение состава и свойств атмосферного воздуха вследствие поступления или образования в нем физических, биологических факторов и (или) химических соединений, которые могут неблагоприятно влиять на здоровье людей и состояние окружающей природной среды. Загрязняющее вещество — это вещество химического или биологического происхождения, которое содержится или поступает в атмосферный воздух и может прямо или опосредованно отрицательно влиять на здоровье человека и состояние окружающей природной среды.

Источник выброса — это объект (предприятие, цех, агрегат, установка, транспортное средство и пр.), из которого поступает в атмосферный воздух загрязняющее вещество или смесь таких веществ. Выброс — это поступление в атмосферный воздух загрязняющих веществ или их смеси.

Главными источниками загрязнения атмосферного воздуха являются транс-порт, теплогенерирующие установки, промышленные предприятия и почва. По данным ВОЗ, наиболее распространенные загрязняющие вещества атмосферного воздуха представлены такими группами: 1) твердые частицы (летучие — зола, пыль, цинка оксид, силикаты, свинца хлорид); 2) соединения серы (серы диоксид, сероводород, меркаптаны); 3) органические соединения (альдегиды, углеводороды, смолы); 4) соединения азота (азота оксид, азота диоксид, аммиак); 5) соединения кислорода (озон, углерода оксид, углерода диоксид); 6) соединения галогенов (водорода фторид, водорода хлорид); 7) радиоактивные соединения (радиоактивные газы, аэрозоли). В соответствии с "Директи-

вами-96/62/ЕС" от 27.08.1996 г. оценку и контроль качества воздушной среды необходимо осуществлять с учетом содержания в ней таких веществ: серы диоксида, азота диоксида, тонкодисперсных твердых частиц, свинца, озона, бензола, углерода оксида, полиароматических углеводородов, кадмия, мышьяка, никеля и ртути.

Для большинства промышленных регионов характерны такие соотношения веществ, загрязняющих атмосферный воздух: углерода оксиды — почти 50%, серы оксиды — 20%, твердые частицы — 16—20%, азота оксиды — 6—8%, углеводороды — 2—5%. К загрязняющим веществам относят также аммиак, сероводород, сероуглерод, альдегиды, хлорорганические соединения, фториды.

На организм человека влияют почти 500 тыс. веществ, из которых известны лишь 5—10%. По прогнозу ожидается, что общий объем производства различных химических веществ увеличится в 2—2,5 раза и превысит 500 млн т. В постоянном круговороте веществ индустриального общества находится почти 65 тыс. химических соединений, ранее в природе не существовавших. Почти 10 тыс. из них ежегодно производят в объеме 0,5—1 млн кг. Причем свыше 2000 этих веществ непосредственно влияют на генетический аппарат клетки, ускоряя мутагенез. Ныне в странах с развитой охраной здоровья в больницах общего профиля по поводу наследственной патологии лечится 15—20% детей от общего количества пациентов. Среди детей, умерших в возрасте до 1 года, 30% составляют умершие в результате мутационных процессов. Только из-за генетических нарушений не вынашивают 25% беременностей в год, появляется на свет 250 тыс. детей с наследственными пороками, в том числе почти 100 тыс. детей — с тяжелыми аномалиями развития.

Выбросы транспорта. Местный транспорт представлен главным образом автомобилями, занимающими приоритетное место среди источников загрязнения атмосферного воздуха (табл. 59).

ТАБЛИЦА 59 Доля выбросов автотранспорта в выбросах вредных веществ в крупных городах мира Город Доля выбросов автотранспорта (% ) от общего количества выбрасываемых веществ Углерода оксид Углево-дороды Азота оксиды Санкт-Петербург 88 79 32 Лос-Анджелес 98 66 72 Мадрид 95 90 35 Москва 96 64 33 Нью-Йорк 97 63 31 Стокгольм 99 93 53 Токио 99 95 33 Торонто 98 69 19 Приведенные в табл. 59 данные не имеют тенденции к снижению. Сегодня мировой автомобильный парк превышает 600 млн единиц, из которых 83—85% составляют легковые, 15—17% — грузовые автомобили и автобусы. Если их поставить бампер к бамперу, то получилась бы лента длиной 4 млн км, которой можно было бы 100 раз опоясать земной шар по экватору. Главными путями эмиссии выхлопных газов автотранспорта являются вентиляционная система топливного бака, карбюратор и система забора воздуха (последняя — только при

ТАБЛИЦА 60 Содержание основных компонентов отработанных газов автомобилей с карбюраторными и дизельными двигателями, % по объему Компоненты Тип двигателя карбюраторный дизельный Азот 74,0 —77,0 76,0- —78,0 Кислород 0,3- —8,0 2,0— -18,0 Водяной пар 3,0- —5,5 0,6- -4,0 Углерода 5,0- -12,0 1,0— 10,0 диоксид Углерода 5,0- 10,0 0,01 —0,5 оксид Азота оксид 0,0- —0,8 2-10' —0,5 Углеводоро 0,2- —3,0 9-Ю- 3—0,5 ды Альдегиды 0,0- —0,2 1-Ю-3 —9-Ю-3 Сажа 0,0— 0,4 * 0,01- -1,0* 3,4-бенз(а)- 10,0— 20,0 ** до 10" пирен * Содержание сажи приведено в г/м . ** Содержание бенз(а)пирена приведено в

мкг/м .

неработающем двигателе). Состав вы-хлопных газов автотранспорта зависит от типа двигателя, режима работы, технического состояния и качества топлива. В настоящее время изучено более 200 компонентов, входящих в состав отработанных газов ав-тотранспорта. По объему наибольший удельный вес имеют углерода оксид (0,5—10%), азота оксиды (до 0,8%), несгоревшие углеводороды (0,2—3,0%), альдегиды (до 0,2%) и сажа. В табл. 60 приведен состав вы-хлопных газов автомобилей в зависимости от типа двигателя.

Таким образом, количество токсических веществ, попадающих в атмосферу вследствие сжигания единицы объема топлива дизельным двигателем, значительно меньше, чем карбюраторным. Однако в выбросах автомобилей, работающих на дизельном топливе, содержание сажи выше. В среднем автомобиль потребляет в год 2 т бензина и выбрасывает в воздух 20—25 тыс. м3 продуктов сгорания, в которых содержится 700 кг СО, 40 кг NOx, 230 кг углеводородов и 2—5 кг твердых частиц.

Уровень загрязнения атмосферного воздуха отработанными газами автотранспорта зависит также от режима его работы. В условиях уличного движения в городе двигатель автомобиля работает 30% времени на холостом ходу, 30—40% — с постоянной нагрузкой, 20—25% — в режиме разгона и 10—15% — в режиме торможения. При этом на холостом ходу автомобиль выбрасывает в среднем 5—7% СО от объема всего выхлопа. Одновременно при таком режиме увеличивается в 2—2,5 раза выброс углеводородов и в 1,5 раза — альдегидов. В процессе движения с постоянной нагрузкой автомобиль выбрасывает лишь 1—2,5% СО. При неотрегулированном карбюраторе выброс СО на холостом ходу повышается до 15%. В табл. 61 приведен состав отработанных газов автомобилей при разных режимах работы.

Выбросы увеличиваются по мере повышения скорости движения транспорта. Частое замедление движения при относительно низкой средней скорости приводит к повышению уровня загрязнения атмосферного воздуха. Наибольший выброс регистрируется в режиме ускорения.

Качество топлива также обусловливает состав отработанных газов автотранспорта. Так, в выхлопных газах автомобилей, работающих на этилированном бензине с добавлением дихлорэтана, содержатся тетрахлордибензо-п-диоксины

ТАБЛИЦА 61

Содержание вредных веществ в выхлопных газах автомобилей в зависимости от режима работы и типа двигателей Вещество Тип двигателя карбюраторный дизельный Малый ход Ускорение Повы-шенный

ход Замед-ленный ход Малый ход Ускорение Повы-шенный ход Замед-ленный ход СО, % C„Hn>% NOx, мг/кг НСНО, мг/кг 13,8 0,98 45 73 2,8 0,20 1430 28 5,1 6,05 314 1 4,8 2,64 12 2214 0,0 0,047 60 4 0,0 0,018 827 7 0,0 0,013 310 4 0,0 0,061 40 7

и полихлорированные дибензофураны. По расчетам, проведенным в Швеции, общее количество полихлорированных дибензо-п-диоксинов и полихлориро- ванных дибензофуранов, выделяемых автомобилями, работающими на этилированном бензине с галогенсодержащими добавками, составляет 10—100 г эквивалентов тетрахлордибензо-п-диоксинов в год. В процессе сжигания бензина с антидетонационными добавками в двигателях внутреннего сгорания образуются галогенидные, оксигалогенидные и оксидные соединения свинца, которые поступают в атмосферу с выхлопными газами в виде аэрозолей. Если концентрация соединений свинца в природном атмосферном воздухе составляет почти 0,5 мкг/м3, то в местах с интенсивным загрязнением воздуха выбросами автотранспорта они достигают 2,4—5,9 мкг/м3. Добавка 3,0—3,8 об.% бензола к бензину является причиной того, что сотни тысяч тонн бензола попадают в воздушный бассейн городов Европы. При интенсивном движении автотранспорта концентрация бензола в атмосферном воздухе Берлина и других городов Германии в 1990—1993 гг. находилась в пределах 8—48 мкг/м3, в Вене — 23 мкг/м3, в жилых помещениях — 9 мкг/м3. В районе городских автомагистралей концентрация бензола в воздухе варьирует от 6 до 10 мкг/м 3. В настоящее время внимание конструкторов и инженеров автомобильного транспорта обращено на газовое топливо. В последние несколько десятилетий проведена большая работа по переводу на газовое топливо грузовых автомобилей и городских автобусов с карбюраторными двигателями. Самая распространенная смесь нефтяных газов состоит из — пропана и бутана, так как она является наиболее экологически чистой. Установлено, что в выхлопных газах двигателя, работающего на пропане и бутане, на холостом ходу содержание СО в 4 раза, а в рабочем режиме — в 10 раз меньше, чем у работающего на бензине. При использовании сжатого природного газа содержание СО в отработанных газах уменьшается в 2—4 раза, СН — в 1,1—1,4 раза, NOx— в 1,2—2 раза.

Атмосферный воздух загрязняется также во время заправки автотранспор- •: та топливом. Так, 300 г бензина, пролившегося на асфальт, загрязняет до 200 000 м3 воздуха. Каждая шина автомобиля за период эксплуатации оставляет на асфальте до 3 кг пыли и сажи. Активная поверхность сажи в 1 м3 выхлопа достигает 10—45 м2. На этой поверхности конденсируется значительное коли- чество смолянистых веществ бенз(а)пирена. Во время эксплуатации автомобильных дорог, изнашивания автомобильного покрытия образуется пыль, которая содержит канцерогенные соединения. Это связано с тем, что применяют вяжущие материалы из каменноугольных смол и дегтей. В приземный слой атмосферного воздуха с такой поверхности мигрируют летучие углеводороды: бензол, толуол, ксилолы, пропилбензол, цимол, инден, стирол, олефины, пара-фины. Вблизи транспортных магистралей концентрация бенз(а)пирена а атмосферном воздухе превышает ПДКсрсут в 10—12 раз, а в середине жилых кварталов — в 1,5—2 раза. На улицах города с покрытием из нефтяных битумов в 1 м3 воздуха выявлено 0,017—0,054 мкг бенз(а)пирена. Концентрация его в атмосферном воздухе вследствие изнашивания дорожного покрытия из дегтебетона составляет от 0,04 до 0,0004 мкг/м3.

Транспорт не только загрязняет атмосферный воздух. Он поглощает кислород. Один автомобиль в год поглощает 4 т кислорода, а один самолет во время перелета через Атлантику — 70—150 т кислорода.

Выбросы теплогенерирующих установок. Свыше 40% энергоресурсов в стране используется на производство электроэнергии, пара и горячей воды. Почти 80% всей электроэнергии производят тепловые электростанции (ТЭС), на долю которых приходится почти 30% вредных выбросов всех стационар - ных источников страны.

Степень загрязнения атмосферного воздуха выбросами ТЭС зависит от количества, качества топлива и технологии сжигания. Соотношение выбросов в процессе сжигания твердого (уголь, кокс, сланец), жидкого (нефть, мазут, смолы) и газообразного (природный газ) топлива приведено в табл. 62.

Таким образом, наибольшие суммарные выбросы происходят при сжигании твердого топлива, а наименьшие — при сжигании природного газа. Глобальные выбросы углерода диоксида при сжигании нефтепродуктов, угля и газа составляют 6,25 млрд т в год. По прогнозу до 2030 г. выбросы С02 в атмосферу на нашей планете возрастут на 15—37%.

Почти 60% общего количества аэрозолей, поступающих в атмосферный воздух от промышленных источников во всем мире, составляют твердые частицы, образующиеся при сжигании угля (табл. 63). Это главным образом зола и пыль, в несколько меньших концентрациях — сажа.

При сжигании твердого топлива имеют значение содержание минеральной части и серы, тип топливных устройств (камерные топки с сухим или жидким шлакоудалением), эффективность работы пылеулавливателей. Так, при использовании низкосортного угля содержание минеральной части повышается от 15—30 до 40—50% (табл. 64). В малосернистом угле содержание серы составляет до 1%, а в высокосернистом — более 3%.

При сжигании угля с содержанием минеральной части Ар = 16—20% в камерных топках вынос твердых частиц в рабочей массе топлива за пределы топочной камеры составляет до 20% его массы. Вследствие этого эксплуатация камерных топок невозможна без систем пылеулавливания. При средней зольности использованного угля 15% выброс золы на ТЭС составляет 8—10 млн т в год. Дымовые газы ТЭС содержат твердые частицы разной дисперсности.

На долю частиц размером до 1 мкм приходится 47,8%, от 1 до 5 мкм — 34,2%, от 5 до 20 мкм — 4,7%, от 20 до 40 мкм — 2,7% и свыше 40 мкм — 2,8%.

Во время работы ТЭС атмосферный воздух загрязняется и оксидами тяжелых металлов (табл. 65).

ТАБЛИЦА 62

Соотношение выбросов при сжигании различных видов топлива, % Вещество Топливо твердое жидкое газообразное Твердые частицы 3,5—80,0 1,0—1,5 0,2 Серы оксиды 25,0—60,0 5,0—31,5 0,006 Азота оксиды 10,0—16,0 5,0—6,4 2,3 Углерода оксиды 1,0—2,2 0,003—0,03 0,006 Углеводороды 0,5 — 1,8 0,15—0,5 0,5 Суммарные выбросы 100,0 11,0—40,0 3,0 ТАБЛИЦА 63 Содержание основных вредных примесей в дыме, образующемся во время сжигания различных видов топлива, г/м3

Вид топлива

Уголь:

березовый бурый

донецкий

экибастузский

Мазут

Газ Концентрация примесей Летучая зола so2 N02 6,66 0,48 0,41 24,2 5,4 0,70 63,9 2,24 0,79 0,10 3,98 0,80 — — 0,70

ТАБЛИЦА 64 Содержание минеральной части и серы в угле, %

Бассейн Марка Мине-ральная часть Сера Донецкий Д 19,6 4,0 Г 15,8 3,3 А 13,3 4,0 Кузнецкий Д 5,0 0,4 Г 10,0 0,6 Экибастузский С 36,8 0,8 Карагандинский п 25,0 0,8 Б 17,0 0,6 ПП 33,9 1,1 Канский Б 10,2 0,5 ТАБЛИЦА 65 Содержание примесей в золе твердого топлива, мг/кг

Вещество Уголь донецкий кузнецкий экибастузский Свинец 170 — 210 20 — 40 Мышьяк 80—110 — 15 — 30 Ванадий 120 — 170 — 40—120 Хром 110—150 — 20 — 100 Цинк 7 0 л 0 0 — 60—250 Кальция оксид 2—8 3,5—20 1,7 Свободный кальция оксид 0,14—0,85 0,2—3,0 0,03 Кремния оксид 40 — 60 50—65 62—66 Свободный кремния оксид 8 — 32 20 — 35 24 — 33

ТАБЛИЦА 66 Поступление в атмосферный воздух загрязняющих веществ при сжигании

мазута и природного газа Максималь Класс Вещество ная концент опас рация, мг/м3 ности Азота диоксид 1200/1000* 2 Углерода оксид 300 4 Серы диоксид 6000 3 Бенз(а)пирен 0,001 1 Ванадия V оксид 30 1 Формальдегид 12 2 Сажа 1000 3 'Содержание азота диоксида в атмосферном воздухе при сжигании природного газа.

Спектр ингредиентов, попавших в атмосферный воздух при сжигании мазута и природного газа, приведен в табл. 66.

Следовательно, если во время сжигания мазута в воздушный бассейн поступают ингредиенты всех четырех классов опасности, то при сго-рании природного газа азота диоксид является единственным веществом, загрязняющим атмосферу, но содер-жание его в выбросах немалое.

На качество атмосферного воздуха оказывает влияние и технология сжигания. Если при послойном методе сжигания лишь 3% выбрасываемых частиц имеют диаметр до 10 мкм, то при пылеугольном — от 20 до 45%. Для пылеугольных топок с сухим шлакоудалением содержание золы в "уносе" (остаток золы удаляется со шлаком) составляет 85—93%, с жидким шлакоудалением — 60—70%, для циклонных топок — 10—15%, цепных решеток — 20—30%.

Если сжигают твердые бытовые отходы, то с каждым миллионом тонн городского мусора образуется 34 тыс. т летучей золы со смесью полихлориро- ванных дибензо-п-диоксинов (ПХДД) и полихлорированных дибензофуранов (ПХДФ). Причем 95—99% этого количества оседает на электрофильтрах и оказывается на свалках, а остальное вместе с газами попадает в атмосферу. Установлено, что содержание ПХДД в летучей золе городского мусоросжигательного завода может достигать 0,2 мкг/г, а ПХДФ — 0,1 мкг/г. Рабочая группа экспертов, созданная Европейским региональным бюро ВОЗ, на основании анализа данных о выбросах ПХДД и ПХДФ из печей для сжигания твердых городских отходов пришла к выводу, что эти вещества образуются в результате сложных термических реакций в условиях неполного сгорания. Трехцикличес- кие ароматические соединения загрязняют атмосферный воздух и при сжигании осадка бытовых сточных вод после их обезвоживания, но в меньшей мере, чем при сжигании твердых бытовых отходов. При неполном сгорании некоторых больничных отходов, содержащих галогенированные органические ингредиенты, концентрация ПХДД в газах достигает 118 нг/м3, ПХДФ — 156 нг/м3, ТХДД— 20 нг/м3. В окружающей среде эти вещества могут находиться продо-лжительное время (период полураспада составляет до 30 лет), быстро перехо-дить в органическую фазу, включаться в процессы биопереноса. Необходимо обратить внимание еще на одну особенность энергетических установок, работающих на органическом топливе. Их выбросы нарушают в природе баланс не только оксидов азота, серы и углерода, но и кислорода. По данным Института всемирного надзора, ежегодно сгорает свыше 12 млрд т топлива и теряется 10—12 млрд т кислорода. Ученые считают, что при современных темпах раз-

вития промышленности всего через 80 лет потребление кислорода достигнет уровня его воспроизводства растениями. Из 29% энергоносителей 26% должно занять ядерное топливо, которое получают из урановой руды. На снимках, сделанных со спутников, над многими городами заметны огромные дымовые облака — скопления пыли. Высокая плотность застройки, многоэтажные дома, улицы, одетые в бетон и асфальт, — все это препятствует движению воздушных потоков, что способствует концентрированию вредных веществ, образованию особого микроклимата в городе, так называемого химического фона. Вследствие этого уменьшается интенсивность ультрафиолетовой радиации, снижается прозрачность атмосферы, увеличивается частота легочных и аллергических заболеваний.

Выбросы промышленных предприятий. Стационарные источники в зави-симости от системы газовых выбросов разделяют на технологические и венти-ляционные. К технологическим относятся так называемые хвостовые технологические выбросы, а также выбросы, которые образуются в результате продувания, утечки из-за неплотности, трещины в оборудовании. Вентиляционными выбросами считаются выбросы механической и общеобменной естественной вентиляции, а также местной вытяжной. По способу отведения газовоздушной смеси в атмосферу выбросы разделяют на организованные и неорганизован-ные. К организованным относят выбросы через трубы и шахты, к неорганизованным — выбросы через фонари, а также выхлопы вредных веществ через неплотности в технологическом оборудовании и из-за испарения с открытой поверхности жидкости. По режиму работы различают постоянно действующие источники вредных выбросов с неравномерным валовым выбросом и источники периодических, залповых выбросов.

В Украине большинство производств разных отраслей промышленности, в соответствии с классификацией Международного агентства по изучению рака при ВОЗ, относится к канцерогенноопасным как для работающих на них, так и для населения в целом, поскольку они являются источником образования и выброса в окружающую природную среду канцерогенных веществ и их предшественников. Прежде всего, это предприятия черной и цветной металлургии, коксохимии, нефтепереработки, химической промышленности, производству асбестосодержащих изделий. По данным научного гигиенического центра МЗ Украины, в воздушной среде населенных пунктов определяется 16 полициклических ароматических углеводородов (ПАУ), из которых 8 оказывают канцерогенное действие. Наибольший удельный вес в структуре химических канцерогенов в атмосфере имеют соединения ПАУ и, в первую очередь, бен- з(а)пирен (табл. 67). Вклад этих соединений в суммарное загрязнение атмосферного воздуха составляет от 60% в сельской местности до 75—85% в про-мышленных центрах.

Высокотемпературные технологические процессы в металлургической и металлообрабатывающей промышленности, а именно: электрохимическое производство никеля и магния, переплавка лома железа, меди и других металлов, обработка окатышей кокс-оксида магния газообразным хлором при температуре 700—800 °С являются источником загрязнения атмосферного воздуха

ТАБЛИЦА 67 Содержание бенз(а)пирена в воздушном бассейне некотооых населенных пунктов Украины, нг/м3

ПХДД и ПХДФ. Больше всего уровни этих веществ (170 нг/м3) образуется в медеплавильных и электродуговых печах, что подтверждается данными анализов выбросов из разных промышленных печей, выполненных в рамках на-циональной стратегической программы US EPA по диоксину (US EPA National Dioxin Strategy).

Потери другого вещества — ртути, которая загрязняет атмосферу, при производстве металла могут достигать 5—7% общего объема выпуска металла. В процессе выплавки 1 т черной меди в воздушный бассейн выбрасывается более 2 т пыли, в которой содержится 4% ртути. Ртуть поступает в атмосферный воздух в виде пара и частиц аэрозоля. В табл. 68 приведена концентрация ртути в атмосферном воздухе в районе расположения разных производств.

В районе Клинского завода "Термприбор", который перерабатывает до 90 тыс. т ртути, концентрация ее пара в радиусе 1 км от предприятия превышает ПДК^р в 2—3 раза. Содержание пара ртути Хайдарканского металлургического комбината в атмосферном воздухе селитебной территории превышает ПДКМ р в 40—50 раз, в районе городской больницы — в 280 раз.

Предприятия по выпуску и переработке цветных сплавов при современной организации технологических процессов и методов улавливания вредных выбросов представляют серьезную угрозу для окружающей среды и здоровья населения (табл. 69).

ТАБЛИЦА 69 Кратность превышения ПДКМ.Р загрязняющих веществ в атмосферном воздухе в зоне влияния выбросов завода цветных металлов Загрязняющее вещество Расстояние, м 300 500 1000 2000 Пыль 1,56 1,38 1,14 1,39 СО 3,10 3,30 3,30 2,80 SC-2 4,40 3,20 1,60 3,20 N02 0,95 1,10 1,10 0,70 H2S 8,40 6,40 6,10 8,30 HF 8,60 7,20 4,80 2,60 HCl 18,70 13,30 13,20 8,00 Pb 4,0 6,7 2,7 1,00 ТАБЛИЦА 68 Содержание ртути в атмосферном воздухе на расстоянии 0,5—1 км от источника выброса, мкг/м3 Мини- Макси- Производство маль- маль- ное ное Металлургический 0,42 0,93 завод Коксохимическое 0,16 2,90 производство Завод химических 0,30 1,40 реактивов Завод цветных 0,28 0,82 металлов Производство алюминия является основой цветной металлургии. По оценкам отечественных специалистов, мировые запасы алюминия (среди бокситов) занимают второе место (после железа), а по среднему годовому приросту использования стоят на первом месте среди металлов. Вследствие роста производства алюминия увеличивается объем отходов. Технологический процесс алюминия включают 4 этапа: 1) получение чистого глинозема; 2) получение криолита и алюминия фторида; 3) изготовление малозольных угольных электродов; 4) электролиз криолино-глиноземных расплавов. На первых этапах в атмосферу выбрасывается бокситная пыль, на последнем — пыль кальцинированной руды. Во время кальцинации глинозема, спекания и выжигания вынос пыли глинозема достигает 150—200% от полученной продукции. В процессе получения алюминия фторида и криолита атмосфера загрязняется газообразным водорода фторидом. В атмосферном воздухе в районе расположения алюминиевых предприятий концентрация NaF колеблется от 0,1 до 19,5 мг/м3, CaF2— от следов до 24,2 мг/м3. В выбросах алюминиевых производств содержатся также полициклические ароматические углеводороды, в частности: бенз(а)пирен, бенз(а)антрацен, дибенз(а)антрацен.

N-нитрозосоединения поступают в атмосферный воздух при производстве аминов, резины, резиновых изделий, искусственной и натуральной кожи, косметических средств, вследствие синтеза в окружающей среде из их предшественников — убиквитарных представителей азотсодержащих соединений. Они не только содержатся в атмосферном воздухе, но и образуются в организме. Одним из наиболее распространенных соединений этой группы является нит- розодиметиламин (табл. 70).

Следовательно, в атмосферном воздухе всех указанных выше зон идентифицирован комплекс веществ N02, ДМА, НДМА. Для каждого из них в зависимости от количественных и качественных особенностей источников выбросов формируются определенные уровни. Анализ их количественного соотношения свидетельствует о том , что в отличие от района промышленных предприятий, где концентрация НДМА коррелирует с содержанием N02и ДМА, в зонах селитебной территории на фоне равномерного относительно невысокого загрязнения атмосферного воздуха ДМА четко выраженная связь наблюдается только между концентрацией НДМА и N02.

Выбросы химической промышленности загрязняют атмосферный воздух населенных мест широким спектром ингредиентов, а именно: оксидами, диоксидами серы и углерода, углеводородами алифатического ряда, альдегидами, кетонами, спиртами, галогенсодержащими соединениями, твердыми частица-

ТАБЛИЦА 70

Содержание нитрозодиметиламина и его предшественников в атмосферном воздухе различных функциональных зон Киева Зона города Вещество Концентрация Кратность превышения ПДКср сут Промышленная N02 0,025—0,388 9,7 ДМА 0,019—0,046 9,2 НДМА 20,0—220,6 4,4 А втомагистрали N02 0,013—0,275 6,9 ДМА 0,001—0,006 1,2 НДМА 23,0—100,0 2,0 Жилая N02 0,015—0,208 5,2 ДМА 0,001—0,006 1,2 НДМА 22,0—58,3 1,2 Парковая N02 0,011—0,197 4,9 ДМА 0,001—0,005 1,0 НДМА 0,009—19,3 0,4 Примечание. Содержание N02и ДМА приведено в мг/м3; НДМА — в нг/м3.

ми. Одной из ведущих отраслей химической промышленности является нефтеперерабатывающая. Нефть является источником эмиссии углеводородов и сероводорода. Атмосферный воздух в районе нефтеперерабатывающих производств содержит ацетон, бензол, акролеин, диметиламин, изопропилбензол, аэрозоль парафина, высшие спирты, жирные кислоты, а также углерода оксид, муравьиную и хлористоводородную кислоты. Эти вещества распространяются от источника выброса в радиусе 10—13 км с наибольшим уровнем загрязнения на расстоянии 1,5 км.

Не менее важную роль в ухудшении качества воздушного бассейна играют предприятия целлюлозно-бумажной промышленности. На стадии делигнифи- кации древесины образуются диоксины. Поскольку лигнин (а это четверть дре-весной массы) содержит фенольные фрагменты, образование хлорированных фенолов и феноксифенолов — предшественников диоксинов ПХДЦ и ПХДФ — в процессе хлорирования лигнина неизбежно.

Для отбеливания целлюлозы используют хлор и его соединения: хлора оксид, гипохлориты, хлориты и хлораты. Так, на 50 млн т отбеленной целлюлозы, вырабатываемой в мире, ежегодно приходится 250 тыс. т хлороргани- ческих соединений, поступающих в атмосферу. Диоксины выявлены не только в пульпе, фильтрате (до 40 нг/кг), твердых и жидких отходах производства (400 нг/кг), но и в газах, образуемых в процессе их сжигания (22 разных изомера и гомологи ПХДД и ПХДФ с числом атомов хлора от 4 до 8, включая 12 из наиболее токсичных). Производство целлюлозы сопровождается поступлением в атмосферный воздух значительного количества органических и неорганических соединений серы, пыли, летучих органических растворителей. Так, во время производства 1 т целлюлозы в атмосферу выделяется 5,5 кг серы диоксида, 6,3 кг сероводорода, 3 кг диметилсульфида.

К экологически опасным источникам загрязнения атмосферного воздуха относится и производство цемента, кирпича, асфальта, рубероида, асбеста и гипса. Характерным для этой отрасли промышленности является выделение частиц пыли диаметром до 10 мкм, а также соединений фтора, свинца, мышьяка, ртути, кремния диоксида, углерода оксида.

Почва — общеизвестный источник загрязнения атмосферного воздуха. Со свободной территории населенного пункта, которая не озеленена и не покрыта зимой снегом, при малейшем ветре почвенная пыль поднимается в воздух. Это минеральная пыль, в которой при неудовлетворительной организации санитарной очистки населенного пункта может содержаться значительное количество органических веществ, микроорганизмов, яиц гельминтов (30—40 в 1 кг).

На территории вдоль автомобильных трасс и вокруг свинцовоплавильных заводов (в радиусе до 30 км) почва интенсивно загрязняется свинцом, а вокруг ртутных производств — ртутью, которые затем мигрируют в приземной слой атмосферного воздуха. Концентрация свинца достигает 0,085 мг/м3, а ртути — 0,002 мг/м3. Из почвы промышленных районов, на территории которых расположены предприятия, использующие хлорированные бифенилы, в воздух поступают полихлорированные бифенилы. Содержание их в атмосферном воздухе составляет 2 мкг/м3.

Вследствие внедрения в сельском хозяйстве интенсивных технологий, предусматривающих широкое использование удобрений и пестицидов с разными физико-химическими свойствами, стабильностью и токсичностью, из почвы в процессе испарения, а также фото- и биохимических реакций в атмосферный воздух мигрируют продукты трансформации пестицидов, которые значительно токсичнее по сравнению с самими препаратами. В безветренную погоду, при температурной инверсии, высокой влажности воздуха в таких районах образуется токсичный туман, который может привести к острому отравлению. '

ТАБЛИЦА 71 Интенсивность эмиссии 2,3,7,8-тетраХДД из почвы и водоемов в атмосферу

Е.И. Гончарук с сотрудниками впервые установил механизм образования токсичного тумана. Научно обосновано, что его капельки могут адсорбировать на своей поверхности пестициды. И концентрация их в 1 м3 тумана может в тысячу раз превышать максимально возможное количество этих соединений в сухом воздухе при неблагоприятных метеорологических условиях. Установлено, что из почвы, загрязненной гербицидами, содержащими ТХДД, в атмосферный воздух поступают трехциклические ароматические соединения. С учетом периода полураспада 2,3,7,8-тетраХДД в почве (10—12 лет), загрязнение атмосферного воздуха может происходить достаточно продолжительное время. ТХДД испаряется также с поверхности свалок отходов, бассейнов (табл. 71).

Значительный удельный вес в сельском хозяйстве имеют животноводческие комплексы, сточные воды которых загрязняют атмосферный воздух угле-рода диоксидом, сероводородом, аммиаком, индолом, скатолом, этиламином, органическими кислотами, а также бактериями, яйцами гельминтов. Из 1 м3 атмо-сферного воздуха в районе расположения животноводческих комплексов высевают 1—2 млн микроорганизмов.

<< | >>
Источник: Е.И. ГОНЧАРУК, В.Г. БАРДОВ и др.. Коммунальная гигиена. Под редакцией доктора медицинских наук, профессора, академика HAH, АМН, АПН Украины, РАМН Е.И. Гончарука. Київ - 2006. 2006

Еще по теме Гигиеническое значение атмосферного воздуха:

  1. 11.6. Правовое регулирование охраны атмосферного воздуха
  2. Глава XV. Охрана атмосферного воздуха
  3. Научное обоснование гигиенических нормативов (стандартов) качества питьевой воды
  4. История развития санитарной охраны почвы.Показатели, характеризующие основные свойства почвы, их гигиеническое значение
  5. Гигиеническое значение почвы
  6. Показатели санитарного состояния почвы и их гигиеническое значение
  7. Гигиеническое значение атмосферного воздуха
  8. Влияние качества атмосферного воздуха на здоровье населения
  9. Мероприятия по охране атмосферного воздуха
  10. Социально-гигиеническое значение жилища
  11. Гигиенические требования к внешним факторам, влияющим на условия проживания населения
  12. Гигиенические основы нормирования факторов внутренней среды места проживания
  13. Общие основы и гигиенические принципы планировки населенных мест. Районная планировка и ее гигиеническое значение
  14. Гигиенические требования к выбору территории для размещения населенных мест. Значение природно-климатических условий и состояния окружающей среды
  15. Физические свойства воздуха и их гигиеническое значение
  16. Погода, климат и их гигиеническое значение
  17. Химический состав атмосферного воздуха и его гигиеническое значение
  18. Гигиеническое значение загрязнения атмосферного воздуха
  19. Гигиеническое значение состава и свойств почвы
  20. Гигиенические требования к планировке, оборудованию и благоустройству аптек