<<
>>

ИММУНОТЕРАПИЯ И ИММУНОПРОФИЛАКТИКА ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ

Иммунотерапия — введение с лечебными целями иммунных препаратов (например, АТ, ИФН, цитокинов и др.). Иммунопрофилактика — введение иммунных препаратов с целью предотвращения развития инфекционных заболеваний (вакцины, сыворотки).

На протяжении столетий практическая медицина применяла эмпирические методы искусственной защиты от инфекционных болезней (например, от оспы). Научные основы иммунопрофилактики были заложены исследованиями Пастера, открывшего феномен аттенуации (ослабления) микробов и создавшего вакцины против сибирской язвы и бешенства. Все средства, применяемые для воздействия на иммунную систему, известны как иммунобиологические препараты. К ним относят разнообразные по природе и происхождению вещества.

ВИДЫ ПРЕПАРАТОВ

Профилактические и лечебные препараты микробного происхождения (например, вакцины, бактериофаги, эубиотики, анатоксины)

Лечебные иммунные препараты (например, Ig, цитокины)

Диагностические иммунные препараты (например, антисыворотки), а также диагностические бактериофаги и аллергены

Иммуномодуляторы (различные синтетические препараты, биостимуляторы природного про-исхождения).

Эффекты ПРЕПАРАТОВ

Иммунобиологические препараты могут проявлять активное или пассивное, специфическое или неспецифическое действие.

Активное действие состоит в индуцировании препаратами иммунных реакций. Такими эффектами обладают вакцинные препараты, изготавливаемые на основе живых ослабленных или убитых микроорганизмов, а также продуктов их жизнедеятельности.

Пассивное действие — эффекты препаратов, представляющих собой эффекторные продукты иммунокомпетентных клеток. Такими эффектами обладают Ig, цитокины и другие иммунобиологические препараты.

Специфическое действие проявляют препараты, обеспечивающие защиту от конкретного возбудителя (например, противокоревая вакцина, столбнячный анатоксин).

Неспецифическое действие оказывают препараты, неизбирательно стимулирующие функции иммунокомпетентных клеток. Такой эффект оказывают иммуномодуляторы, многие биостимуляторы и другие препараты.

Вакцины

Вакцины — иммунобиологические препараты, предназначенные для активной иммунопрофи-лактики, то есть для создания активной специфической невосприимчивости организма к конкретному возбудителю. Вакцинация признана ВОЗ идеальным методом профилактики инфекционных заболеваний человека. Высокая эффективность, простота, возможность широкого охвата вакцинируемых лиц с целью массового предупреждения заболевания вывели активную иммуно-профилактику в большинстве стран мира в разряд государственных приоритетов. Комплекс мероприятий по вакцинации включает отбор лиц, подлежащих вакцинации, выбор вакцинного препарата и определение схемы его использования, а также (при необходимости) контроль эффективности, купирование возможных патологических реакций и осложнений. В качестве Аг в вакцинных препаратах выступают:

цельные микробные тела (живые или убитые);

отдельные Аг микроорганизмов (наиболее часто протективные Аг);

токсины микроорганизмов;

искусственно созданные Аг микроорганизмов;

Аг, полученные методами генной инженерии.

Большинство вакцин разделяют на живые, инактивированные (убитые, неживые), молекулярные (анатоксины) генно-инженерные и химические; по наличию полного или неполного набора Аг — на корпускулярные и компонентные, а по способности вырабатывать невосприимчивость к одному или нескольким возбудителям — на моно- и ассоциированные.

ЖИВЫЕ ВАКЦИНЫ

Живые вакцины — препараты из аттенуированных (ослабленных) либо генетически изменённых патогенных микроорганизмов, а также близкородственных микробов, способных индуцировать невосприимчивость к патогенному виду (в последнем случае речь идёт о так называемых дивергентных вакцинах). Поскольку все живые вакцины содержат микробные тела, то их относят к группе корпускулярных вакцинных препаратов.

Иммунизация живой вакциной приводит к развитию вакцинального процесса, протекающего у большинства привитых без видимых клинических проявлений. Основное достоинство живых вакцин — полностью сохранённый набор Аг возбудителя, что обеспечивает развитие длительной невосприимчивости даже после однократной иммунизации. Живые вакцины обладают и рядом недостатков. Наиболее характерный — риск развития манифестной инфекции в результате снижения аттенуации вакцинного штамма. Подобные явления более типичны для противовирусных вакцин (например, живая полиомиелитная вакцина в редких случаях может вызвать полиомиелит вплоть до развития поражения спинного мозга и паралича).

Ослабленные (аттенуированные) вакцины изготавливают из микроорганизмов с пониженной патогенностью, но выраженной иммуногенностью. Введение вакцинного штамма в организм имитирует инфекционный процесс: микроорганизм размножается, вызывая развитие иммунных реакций. Наиболее известны вакцины для профилактики сибирской язвы, бруцеллёза, Ку-лихорадки, брюшного тифа. Однако большая часть живых вакцин — противовирусные. Наиболее известны вакцина против возбудителя жёлтой лихорадки, противополи- омиелитная вакцина Сэйбина, вакцины против гриппа, кори, краснухи, паротита и аденовирусных инфекций.

Дивергентные вакцины. В качестве вакцинных штаммов используют микроорганизмы, находящиеся в близком родстве с возбудителями инфекционных болезней. Аг таких микроорганизмов индуцируют иммунный ответ, перекрёстно направленный на Аг возбудителя. Наиболее известны и длительно применяются вакцина против натуральной оспы (из вируса коровьей оспы) и БЦЖ для профилактики туберкулёза (из микобактерий бычьего туберкулёза).

ИНАКТИВИРОВАННЫЕ ВАКЦИНЫ

В настоящее время также применяют вакцины, изготовленные из убитых микробных тел либо метаболитов, а также из отдельных Аг, полученных биосинтетическим или химическим путём. Вакцины, содержащие убитые микроорганизмы и их структурные компоненты, относят к группе корпускулярных вакцинных препаратов.

Неживые вакцины обычно проявляют меньшую (по сравнению с живыми вакцинами) иммуногенность, что диктует необходимость многократной иммунизации. В то же время неживые вакцины лишены балластных веществ, что значительно уменьшает частоту побочных эффектов, часто развивающихся после иммунизации живыми вакцинами.

Корпускулярные (цельновирионные) вакцины. Для их приготовления вирулентные микроорганизмы убивают либо термической обработкой, либо воздействием химических агентов (например, формалина или ацетона). Подобные вакцины содержат полный набор Аг. Спектр возбудителей, используемых для приготовления неживых вакцин, разнообразен; наибольшее распространение получили бактериальные (например, противочумная) и вирусные (например, антирабическая) вакцины.

Компонентные (субъединичные) вакцины — разновидность корпускулярных неживых вакцин; они состоят из отдельных (главных, или мажорных) антигенных компонентов, способных обеспечить развитие невосприимчивости. В качестве Аг применяют иммуногенные компоненты возбудителя. Для их выделения используют различные физико-химические мето- ды, поэтому препараты, подучаемые из них, также известны как химические вакцины. В настоящее время разработаны субъединичные вакцины против пневмококков {на основе полисахаридов капсул), брюшного тифа (О-, Н- и Vi-Аг), сибирской язвы (полисахариды и полипептиды капсул), гриппа (вирусные нейраминидазы и гемагглютинин). Для придания более высокой иммуногенности компонентные вакцины нередко сочетают с адъювантами (например, сорбируют на гидроксиде алюминия).

ГЕННО-ИНЖЕНЕРНЫЕ (РЕКОМБИНАНТНЫЕ) ВАКЦИНЫ

Генно-инженерные вакцины содержат А г возбудителей, полученные с использованием методов генной инженерии, и включают только высокоиммуногенные компоненты, способствующие формированию защитного иммунитета (более подробно см. главу 7). Возможны несколько вариантов создания генно-инженерных вакцин.

Внесение генов вирулентности в авирулентные или слабовирулентные микроорганизмы.

Внесение генов вирулентности в неродственные микроорганизмы с последующим выделением Аг и его использованием в качестве иммуногена.

Искусственное удаление генов вирулентности и использование модифицированных организмов в виде корпускулярных вакцин.

Ряд современных противовирусных вакцин сконструирован путём введения генов, кодирующих основные Аг патогенных вирусов и бактерий в геном вируса осповакцины (HBsAg вируса гепатита В) и непатогенных для человека сальмонелл (HBsAg вируса гепатита В и Аг токсина столбнячной палочки).

Другим примером служит введение генов возбудителя туберкулёза в вакцинный штамм Б1ДЖ, что придаёт ему большую активность в качестве дивергентной вакцины. Такие препараты известны как векторные вакцины.

Для активной иммунопрофилактики гепатита В также предложена вакцина, представляющая собой HBsAg вируса. Его получают из дрожжевых клеток, в которые введён вирусный ген (в форме плазмиды), кодирующий синтез HBsAg. Препарат очищают от дрожжевых белков и используют для иммунизации. В качестве метода более быстрой и дешёвой наработки бактериальных экзотоксинов в настоящее время разработаны методы их получения при помощи неприхотливых микроорганизмов, в геном которых искусственно внесены гены токсинообразования (например, в виде плазмид).

Селективное удаление генов вирулентности открывает широкие перспективы для получения стойко аттенуированных штаммов шигелл, токсигенных кишечных палочек, возбудителей брюшного тифа, холеры и других диареегенных бактерий. Возникает возможность создания поливалентных вакцин для профилактики кишечных инфекций, вводимых внутрь. Другим важным направлением выступает возможность получения аттенуированных штаммов возбудителя туберкулёза человека и их использования в качестве вакцин.

СИНТЕТИЧЕСКИЕ ВАКЦИНЫ

Принцип их конструирования включает синтез или выделение нуклеиновых кислот или по- липептидных последовательностей, образующих Ar-детерминанты, распознаваемых нейтрализующими АТ. Непременные компоненты таких вакцин — сам Аг, высокомолекулярный носитель (винилпирролидон или декстран) и адъювант (повышающий иммуногенность вакцин). Подобные препараты наиболее безопасны в плане возможных поствакцинальных осложнений, но их разработке мешают две проблемы. Во-первых, не всегда имеется информация об идентичности синтетических эпитопов естественным Аг. Во-вторых, низкомолекулярные синтетические пептиды обладают низкой иммуногенностью, что приводит к необходимости подбора соответствующих адъювантов. С другой стороны, введение синтетических вакцин в комбинации с адъювантами и иммуномодуляторами перспективно у лиц с нарушениями иммунного статуса.

Особые перспективы имеет использование нуклеиновых кислот для иммунопрофилактики инфекций, вызываемых внутриклеточными паразитами. В эксперименте показано, что иммунизация организма РНК и ДНК многих вирусов, малярийного плазмодия или возбудителя туберкулёза приводит к развитию стойкой невосприимчивости к заражению.

МОЛЕКУЛЯРНЫЕ ВАКЦИНЫ (АНАТОКСИНЫ)

В подобных препаратах Аг служат молекулы метаболитов патогенных микроорганизмов. Наиболее часто в этом качестве выступают молекулы бактериальных экзотоксинов. Анатоксины используют для активной иммунопрофилактики токсинемических инфекций (дифтерии, столбняка, ботулизма, газовой гангрены, стафилококковых инфекций и др.). Цель их применения — индукция иммунных реакций, направленных на нейтрализацию токсинов; в результате иммунизации синтезируются нейтрализующие АТ (антитоксины). Обычный источник токсинов — промышленно культивируемые естественные штаммы-продуценты (например, возбудители дифтерии, ботулизма, столбняка). Полученные токсины инактивируют термической обработкой либо формалином, в результате чего образуются анатоксины (токсоиды), лишённые токсических свойств, но сохранившие иммуногенность. Анатоксины очищают, концентрируют и для усиления иммуно- генных свойств адсорбируют на адъюванте (обычно, гидрооксид алюминия). Адсорбция анатоксинов значительно повышает их иммуногенную активность. С одной стороны, образуется «депо» препарата в месте его введения с постепенным поступлением в кровоток, с другой — действие адъюванта стимулирует развитие иммунного ответа, в том числе и в регионарных лимфатических узлах. Анатоксины выпускают в форме моно- (дифтерийный, столбнячный, стафилококковый) и ассоциированных (дифтерийно-столбнячный, ботулинический трианатоксин) препаратов.

Б некоторых случаях для иммунизации применяют конъюгированные вакцины, представляющие собой комплексы бактериальных полисахаридов и токсинов. Подобные комбинации значительно усиливают иммуногенность компонентов вакцин, особенно полисахаридной фракции (например, сочетание Аг Haemophilus influenzaeи дифтерийного анатоксина). В этой ситуации последний играет роль носителя, и в ответ на введение Аг полисахаридов формируется пул длительно циркулирующих клеток памяти. Предпринимаются попытки создать смешанные бесклеточные вакцины, включающие анатоксины и некоторые другие факторы патогенности, например адгезины. В настоящее время такие вакцины проходят клинические испытания для профилактики коклюша.

МОНО- И АССОЦИИРОВАННЫЕ ВАКЦИНЫ

В большинстве случаев вакцины и анатоксины применяют для создания невосприимчивости к одному возбудителю (так называемые моновалентные препараты). Путём одномоментной иммунизации возможно и достижение множественной невосприимчивости. Для этого создают ассоциированные (поливалентные) препараты, совмещая Аг нескольких микроорганизмов. Для приготовления ассоциированных вакцин обычно используют убитые микробы или их компоненты. Их применение определяют эпидемическая обоснованность (против детских или раневых инфекций), иммунная совместимость и технологическая возможность комбинирования нескольких Аг. Наиболее известные ассоциированные препараты: адсорбированная коклюшно- дифтерийно-столбнячная вакцина (АКДС-вакцина), тетравакцина (вакцины против брюшного тифа, паратифов А и В, а также столбнячный анатоксин) и АДС-вакцина (дифтерийно-столбнячный анатоксин).

МЕТОДЫ ВАКЦИНОПРОФИЛАКТИКИ

Вакцинные препараты вводят внутрь, подкожно и внутрикожно, парентерально, интраиазаль- но и ингаляционно. Способ введения определяют свойства препарата. Живые вакцины можно вводить накожно (скарификацией), интраназально или перорально: анатоксины вводят подкожно, а неживые корпускулярные вакцины — парентерально. При массовых иммунизациях выбирают наиболее экономичный способ, обеспечивающий быстрое и эффективное создание иммунной прослойки (невосприимчивых лиц) в популяции, особенно в эпидемический период. Например, интраназалъная вакцинация против гриппа в период перед предполагаемой эпидемией или пандемией позволяет быстро и экономически эффективно создать иммунную прослойку в популяции. По степени необходимости выделяют плановую (обязательную) вакцинацию и вакцинацию по эпидемиологическим показаниям. Первую проводят в соответствии с регламентированным календарём иммунопрофилактики наиболее распространённых или опасных инфекций. Вакцинацию по эпидемиологическим показаниям проводят для срочного создания иммунитета у лиц, подвергающихся риску развития инфекции. Например, у декретированного контингента (персонал инфекционных больниц), при вспышке инфекционного заболевания в населённом пункте или предполагаемой поездке в эндемичные районы (жёлтая лихорадка, гепатит А).

ЭФФЕКТИВНОСТЬ ВАКЦИН

Способность вакцин вызывать состояние невосприимчивости проверяют биологическим (заражая патогенными микробами предварительно иммунизированных лабораторных животных) и эпидемиологическим (отслеживая заболеваемость среди иммунизированных лиц) способами.

В первом случае основным показателем является индекс защиты — частное от деления числа заболевших или погибших неиммунизированных животных на такой же показатель иммуни-зированных животных. Для эпидемиологической оценки используют аналогично рассчитываемый индекс эффективности. Высокие значения индексов соответствуют большей эффективности вакцинного препарата.

По аналогии с лекарственными препаратами, одним из условий эффективной вакцинации является доставка вакцинного материала до иммунокомпетентных клеток, так как он может подвергаться различным ферментативным воздействиям. Для этого в вакцины вносят различные стабилизирующие агенты, но более предпочтительно использование различных носителей, например липосом или моноклональных АТ. Применение моноклональных АТ ограничивают их свойство перекрёстно реагировать с различными тканевыми Аг макроорганизма. Большие перспективы имеют липосомы — микроскопические пузырьки, стенки которых образованы двойным слоем фосфолипидов. Благодаря этому сходству с биологическими мембранами липосомы не распознаются как чужеродные, не проявляют токсических свойств, легко адсорбируются на клетках, а также длительно сохраняют своё содержимое в крови и различных тканевых жидкостях. При поглощении липосом макрофагами их стенки постепенно растворяются, выделяя заключённые в них Аг в цитоплазму фагоцитов, вызывая более интенсивное развитие иммунных реакций, в сотни и тысячи раз превосходящее эффект от парентерального введения Аг. При этом Аг, фиксированные на мембранах липосом проявляют свойства адъювантов, усиливающих развитие иммунного ответа.

Сывороточные иммунные препараты

К сывороточным иммунным препаратам относят иммунные сыворотки и Ig. Эти препараты обеспечивают пассивную невосприимчивость к возбудителям инфекционных болезней. Действующее начало таких препаратов — специфические АТ. Другими словами, в организм человека вводят готовые эффекторные молекулы. Поэтому их можно использовать для профилактики и лечения инфекций. Содержание АТ в сывороточных иммунных препаратах (активность) выражают в титрах АТ. По механизму действия АТ сывороточных препаратов проявляют агглютинирующий, преципитирующий, комплементсвязывающий, нейтрализующий и другие эффекты. Обычно сывороточные препараты вводят парентерально; при этом состояние невосприимчивости развивается быстро, но длится недолго (в пределах 2-6 нед).

ИММУННЫЕ СЫВОРОТКИ

Иммунные сыворотки получают из крови искусственно иммунизированных животных и лю- дей-доноров (в этих целях используют периферическую, плацентарную и абортную кровь). Для получения высоких титров АТ лошадей и кроликов иммунизируют дробным введением соответствующих Аг в больших дозах. Препараты, изготовляемые из крови животных, содержат гетеро логичные АТ, поэтому человеку такие гетеро логичные (чужеродные) сыворотки вводят при соблюдении мер предосторожности. Например, столбнячную антисыворотку (получаемую из крови иммунизированных лошадей) вводят после постановки кожных проб на чувствительность, дробно по Безрёдке на фоне приёма десенсибилизирующих средств. Препараты, изготовляемые из крови иммунизированных доноров, содержат гомологичные АТ; гомологичные сыворотки лишены многих побочных эффектов гетерологичных сывороток. Гомологичные сыворотки применяют для профилактики и лечения вирусных гепатитов, кори, столбняка, ботулизма и др. После введения гетерологичных сывороток состояние невосприимчивости длится 2-3 нед, эффект гомологичных АТ сохраняется 4-6 нед.

ИММУНОГЛОБУЛИНЫ

Ig получают осаждением из сыворотки крови, что освобождает их от балластных компонентов. Затем препараты очищают и концентрируют. Ig применяют для лечения и профилактики кори, клещевого энцефалита, стафилококковых инфекций, столбняка и других инфекций.

Иммуномодуляторы

Известно большое количество иммуномодуляторов, разделяемых на три основных класса (табл. 10-16). Их объединяет одно свойство — иммуномодуляторы имеют «иммунные точки действия», то есть мишени среди иммунокомпетентных клеток.

Таблица 10-16. Основные группы иммуномодуляторов Происхождение Препараты Цитокины ИЛ, ИФН, колониестимулирующие факторы, ФНО, эритропоэ- тины и др. Природные соединения (микроор-ганизмы и их компоненты) Бактериальные и вирусные вакцины, ЛПС, гликаны, продигиозан, сальмазан, лирогенал, рибомунил и др. Синтетические высоко- и низкомо-лекулярные препараты Полифосфаты, поликарбоксилаты, полисульфаты, левамизол, инозиплекс, диуцифон и др. Эндогенные иммуномодуляторы — цитокины, обеспечивающие поддержание гомеостаза в организме. Экзогенные иммуномодуляторы разделяют на природные и синтетические.

Природные препараты — компоненты микроорганизмов (вирусов, бактерий); наиболее изучены ЛПС, пептидо- и кетогликаны бактерий. Некоторые вакцины сами способны оказывать иммуномодулирующее и терапевтическое действие. Например, противогерпетическан вакцина снижает частоту рецидивов простого герпеса; введение БЦЖ усиливает эффективность химиопрепаратов, применяемых для лечения лепры. Аналогичный эффект наблюдают и при сочетании БЦЖ с противотуберкулёзными ЛС.

Синтетические препараты включают тысячи соединений, обладающих, помимо иммуномодулирующего, рядом других эффектов (например, гипотензивным). В эту группу препаратов входят синтетические аналоги нуклеиновых кислот (синтетические полинуклеотиды), адапто- гены, поверхностно-активные вещества (полисульфаты, поликарбонаты), производные пира- на, имидазола, флюоренов, пиримидинов и др. Помимо иммуномодулирующего действия, многие синтетические препараты и микробные продукты способны активировать систему ИФН.

Типы ИММУНОМОДУЛИРУЮЩЕЙ ТЕРАПИИ

Препараты можно применять как для лечения иммунодефицитов, вызванных вирусными инфекциями, так и для профилактики инфекций у лиц с иммунодефицитами. В настоящее время выделяют три основных типа иммуномодулирующей терапии — активная, адаптивная и пассивная. Важное условие для успешного применения иммуномодуляторов — знание мишеней, на которые они действуют. Например, известные бактериальные продукты (ЛПС энтеробактерий, сальмозан, продигиозан и др.) активируют макрофаги. ИЛ-4, ИЛ-5 и ИЛ-6 стимулируют рост и дифференцировку В-лимфоцитов. Пептиды вил очковой железы (входящие в состав препаратов тимозин, тимопоэтин, тималин, Т-активин), левамизол, изопринозин, полиакриламидные кислоты, ИЛ-І, ИЛ-2 и ИЛ-3 стимулируют различные популяции Т-клеток. Наконец, ИФН рассматривают как лимфокины с неспецифическим механизмом действия, а синтетические и природные полифосфаты и поликарбоксилаты — как поликлональные активаторы, действующие на целые субпопуляции лимфоцитов.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ

Подавляющее большинство иммуномодуляторов в силу ряда причин (токсичность, недостаточная эффективность, побочные эффекты, высокая стоимость, недостаточная изученность) редко применяют на практике. Практическое применение нашли лишь единичные препараты (табл. 10-17).

Прочие иммунобиологические препараты

В эту группу входят фаги, эубиотики и диагностические иммунные препараты.

ФАГИ

В качестве иммунобиологических препаратов используют бактериофаги, лизирующие клетки возбудителей бактериальных инфекций. Фаги применяют для диагностики, профилактики и лечения бактериальных инфекций. Получают фаги культивированием инфицированных ими бактерий с последующей очисткой дочерних популяций вирусов. Специфичность и титр фагов определяют на культурах чувствительных штаммов бактерий.

Диагностика. В диагностических целях применяют широкий спектр бактериофагов. По спектру действия выделяют поливалентные (лизирующие родственные бактерии, в том числе близких видов), моновалентные (лизирующие бактерии одного вида) и типоспецифичес-

Таблица 10-17. Иммуномодуляторы, имеющие клиническое значение Препараты Основные механизмы действия Диуцифон Стимуляция секреции ИЛ-2 Левамизол Коррекция функций Т-лимфоцитов и фагоцитов Изопринозин Стимуляция активности Т-лимфоцитов Миелопептид Стимуляция активности В-лимфоцитов Дибазол, метилурацил, пентоксил, пирогена л, продигиозан, Л ПС энтеробактерий, сальмозан Стимуляция активности фагоцитов, В-лимфоцитов, лейкопо- ээа и цитотоксических свойств моноцитов ИЛ-4, ИЛ-5, ИЛ-6 Запуск и стимуляция дифференцировки В-лимфоцитов Т-активин, тимозин, тимотропин, тималин Коррекция функций Т-лимфоцитов, стимуляция синтеза ИЛ-1, ИЛ-2, ИЛ-3 и цитотоксической активности лимфоидных клеток Полифосфаты, поликарбоксилаты Поликлональная активация иммунокомпетентных клеток Индукторы ИФН Синтез ИФН ИФН Описано более 100 эффектов кие (лизируюшие отдельные штаммы бактерий одного вида) фаги. Стандартные наборы фагов применяют для фаготипирования возбудителей холеры, брюшного тифа, дифтерии, сальмонеллёзов, стафилококковых инфекций и др. Фаготипирование проводят с целью выявления чувствительности патогенных бактерий к препаратам на основе этих фагов; а также для установления характера и скорости изменения микробных пейзажей в ЛПУ.

Профилактика. В профилактических целях применяют фаги, репродуцирующиеся в клетках возбудителей сальмонеллёзов, шигеллёзов, холеры и других инфекций.

Терапия. Для фаготерпии применяют фаги, лизирующие кишечные бактерии и возбудителей раневых инфекций (стафилококки, стрептококки и др.).

ЭУБИОТИКИ ,

Эубиотики — культуры микроорганизмов, входящих в состав нормальной микрофлоры кишечника. В качестве эубиотиков чаще используют лиофшшзированные микробные культуры. Живые культуры вводят в состав кисломолочных продуктов (кефиры «Бифидо», «Бифидок», «Чудо-йогурт» и др.). Препараты назначают для коррекции дисбактериозов, развивающихся после антимикробной терапии.

ДИАГНОСТИЧЕСКИЕ ИММУННЫЕ ПРЕПАРАТЫ

Диагностические иммунные препараты применяют для диагностики инфекционных, аллергических и аутоиммунных болезней, иммунодефицитных состояний, а также болезней злокачественного роста. Действие этих препаратов основано на выявлении клеточных и гуморальных реакций, развившихся после проникновения Аг в организм.

Антисыворотки. Наиболее известны диагностические иммунные сыворотки (антисыворотки), с помощью которых выявляют Аг возбудителей в клиническом материале, а также проводят серологическую идентификацию микроорганизмов из выделенных культур. Для установления принадлежности микроорганизмов к конкретному виду применяют видовые антисыворотки (АТ). Для распознавания Аг, общих для групп микроорганизмов одного вида, применяют групповые антисыворотки (АТ). Серовароспецифичные антисыворотки позволяют различать серологические варианты (серовары) микроорганизмов в пределах одного вида. Инфекционные аллергены. Для выявления сенсибилизации организма инфекционными или неинфекционными Аг используют специфические растворимые Аг — аллергены. С их помощью определяют повышенную IgE-опосредованную чувствительность к различным АГ: пыльце растений, химическим веществам, пищевым продуктам, медикаментам и т.д. Наиболее часто аллергены вводят внутрикожно. Большой практический интерес представляет определение повышенной чувствительности немедленного или замедленного типа к микробным Аг. Такие препараты обозначают как диагностические инфекционные аллергены. Часть выпускают в стандартном виде, часть готовят ex temporeв лабораторных условиях. В качестве диагностических инфекционных аллергенов применяют компоненты микробных тел, а также их метаболиты (например, токсины).

<< | >>
Источник: O.K. Поздеев. Медицинская микробиология. 2001. 2001

Еще по теме ИММУНОТЕРАПИЯ И ИММУНОПРОФИЛАКТИКА ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ:

  1. БРОНХИАЛЬНАЯ АСТМА
  2. § 6. Иммунопрофилактика и иммунотерапия инфекционных болезней человека
  3. УЧЕНИЕ ОБ ИММУНИТЕТЕ
  4. ИММУНОТЕРАПИЯ И ИММУНОПРОФИЛАКТИКА ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ
  5. Дифференциальная диагностика острых респираторных заболеваний
  6. Глава 1МЕХАНИЗМ РАЗВИТИЯ АЛЛЕРГИЧЕСКИХ БОЛЕЗНЕЙ У ДЕТЕЙ
  7. ПРИНЦИПЫ ИММУНОТЕРАПИИ В НЕ0НАТ0Л0ГИИ
  8. БАКТЕРИАЛЬНЬІЙ ВАГИНОЗ
  9. БАКТЕРИАЛЬНЬІЙ ВАГИНОЗ
  10. ПРИНЦИПЫ ПРИМЕНЕНИЯ ИММУНОТРОПНЫХ СРЕДСТВ
  11. Глава 9 Медицинские противопоказания при проведении профилактических прививок
  12. Глава 1 ОСНОВНЫЕ ЗАДАЧИ И ПРОБЛЕМЫ КЛИНИЧЕСКОЙ ИММУНОЛОГИИ