Глава VIО ДЕЛЕНИИ
Задача деления. От процесса определения отличается процесс деления (divisio). Различие между ними заключается в том, что определение раскрывает содержание понятия, а деление раскрывает его объём.
Задача деления заключается в том, чтобы указать все виды, совокупность которых составляет объём данного понятия. Так, например, понятие «треугольник» мы могли делить следующим образом:Треугольник (А) –Прямоугольный (B)
-Остроугольный (C)
- Тупоугольный (D)
У нас было понятие «треугольник» (Л), и мы перечислили все частные понятия: В, С и D, входящие в объём этого более общего понятия, которое относится к ним, как род к своим видам.
То понятие, объём которого мы раскрываем, называется делимым (totum dividendum), а те виды, которые получаются от деления, называются членами деления (membra divisionis).
Основание деления. Когда мы производим деление рода на виды, то мы обращаем внимание на те признаки, которыми обладают одни виды и не обладают другие. Тот признак, который даёт нам возможность разделить род на виды, называется основанием деления (fundamentum divisionis). Основанием вышеприведённого деления понятия «треугольник» была величина углов в треугольнике. Но можно, это же самое понятие делить по какому-нибудь другому основанию, например положить в основание деления отношение сторон треугольника по величине. Тогда деление представится в следующем виде:
Треугольник (A): Равносторонний (B)
Равнобедренный (C)
Разносторонний (D)
Процесс несколько усложняется, если полученные от деления виды в свою очередь делить на подвиды (этот процесс называется подразделением). Так, например, вид понятия «треугольник», именно тупоугольный треугольник (или какой-нибудь другой),. можно в свою очередь подразделить на подвиды: равнобедренный и разносторонний; разумеется, деление и подразделение будут относиться к одному понятию: дихотомия.
В процессе деления иногда употребляется приём, который называется дихотомией и который заключается в деления данного понятия Л на противоречащие понятия В и не-В. Берём какое-нибудь понятие, которое нам надо разделить, например понятие «человек»; выделяем в одну группу какой-нибудь из видов, заключающихся в этом понятии, например вид «славянин», а в другую группу — «не-славянин» — относим все прочие виды. Затем с этим вторым отрицательным понятием поступаем точно таким же образом: подразделяем понятие «не-славянин» на две группы; в одну из них относим, например, подвид «германец», а в другую — все прочие остающиеся подвиды, соединяя их в одно понятие «не-германец»; затем с этим понятием поступаем точно так же, как и с предыдущим, и продолжаем наше деление до тех пор, пока оно не окажется исчерпанным.Человек: Славянин
Не-славянин: Германец
Не-германец
И т. д.
Этот приём имеет тот недостаток, что оставляет каждый раз крайне неопределённой часть объёма делимого понятия, именно ту часть, которая обозначается частицей не, но, с другой стороны, значительно облегчает самый процесс деления, потому что придаёт ему исчерпывающий характер, почему его иногда называют исчерпывающим делением. Что оно имеет ис-черпывающий характер, можно объяснить при помощи следующего примера. Если мы разделим всех обитателей Европы и Азии на расы — белую и жёлтую, то может оказаться, что некоторые племена не подойдут ни под одну из этих рас и мы не будем в состоянии поместить их в нашем делении, но этого не будет в том случае, если мы будем делить дихотомически.
Обитатели земного шара: Белые
Не-белые: Желтые
Не-желтые
При таком делении всякое новое племя должно будет войти в последнюю группу, которая не будет ни белой, ни жёлтой. В этом заключаются преимущества дихотомического деления.
Правила деления. Деление должно подчиняться следующим правилам:
1. Деление должно быть адекватно, или соразмерно. Это значит, что если мы перечисляем по какому-нибудь основанию или принципу виды данного родового понятия, то мы должны точно перечислить все виды, не уменьшая и не увеличивая их количества, т.
е. сумма видов должна равняться делимому роду.Если при делении мы не перечислим всех видов, т. е. если эта сумма будет меньше, то у нас получится деление неполное; если же мы в объём делимого понятия введём виды, которые в нём на самом деле не содержатся, то у нас получится деление слишком обширное, т. е. указанная сумма будет больше. Например, положив в основание деления понятия «треугольник» величину его углов, мы могли бы получить такое деление:
Треугольник: Остроугольный
Тупоугольный
Ясно, что это деление неполное, ибо здесь не хватает одного члена деления, потому что в объёме понятия «треугольник» находится ещё один вид, который при делении нами пропущен, именно прямоугольный треугольник.
Неполным было бы деление людей на порочных и добродетельных, деление научных теорий на истинные и ложные, потому что в этих делениях упускаются промежуточные ступени. Кроме людей порочных и добродетельных есть люди, о которых нельзя сказать, что они порочны, но нельзя также сказать, что они добродетельны; кроме истинных и ложных теорий существуют еще теории частью истинные и частью ложные.
Обратная ошибка будет получаться в том случае, если мы, деля какое-либо понятие, вводим в его объём такой вид, который не входит в действительности в его объём. Если бы мы, например, разделили понятие «дерево» на «дуб», «ель», «фиалка», то очевидно, что вид «фиалка» относится к объёму совсем другого понятия и что при делении понятия «дерево» он попал в число членов его неправильно.
2. Члены деления должны исключать друг друга. Это требование станет ясным, если мы возьмём для примера, следующее деление:
Книги: Французские
Немецкие
Словари и т. д.
Это деление неправильно, ибо понятие, например, «французские книги» и понятие «словари» не исключают друг друга: книга может быть и французской и словарём в одно и то же время. Или возьмём в пример также другое деление понятия «книги»:
Книги: Полезные
Понятные
Интересные и т.
д.Здесь один вид книг не исключает из своего объёма других видов: полезная книга может быть в одно и то же время и понятной и интересной. Ошибки, как в первом, так и во втором из приведённых примеров деления произошли потому, что не было выдержано третье требование правильного деления, а именно:
3. Деление должно иметь одно основание. При делении понятий чаще всего повторяется ошибка, заключающаяся в том, что в процессе деления меняется основание деления.
Произведём деление народов Европы:
Народы Европы: Магометане
Христиане
Французы
Немцы и т.д.
Это деление неправильно, ибо мы, взяв сначала основанием деления понятие «религия», затем меняем это основание на другое, именно на понятие «национальность».
Или другой пример:
Прямолинейные фигуры: Треугольники
Параллелограммы
Прямоугольники
Многоугольники
Это деление также неправильно, так как у нас здесь скрещиваются такие различные основания деления, как число сторон, направление сторон, величина углов. Такое деление называется перекрёстным;
Итак, третье условие правильности деления заключается в том, чтобы при последовательном перечислении видов делимого понятия было выдержано одно основание деления. Но следует заметить, что одно основание деления должно быть выдержано только при первом делении понятия; уже при вторичном делении, т. е. при подразделении, основание деления должно измениться. Так, например, если мы разделили понятие «треугольник», взяв основанием деления величину углов, на такие виды, как остроугольный, прямоугольный и тупоугольный, то, желая далее продолжать деление какого-нибудь из этих членов деления, мы уже должны основание деления изменить. Так, понятие «остроугольный треугольник» мы можем делить ещё далее, если возьмём основанием деления уже не величину углов, а отношение сторон по величине.
Треугольник: 1) Тупоугольный
2) Прямоугольный
3) Остроугольный: а) равносторонний
б) равнобедренный
в) разносторонний
4.
Деление должно быть непрерывным, т. е. при делении какого-либо понятия нужно переходить к ближайшему низшему роду, в противном случае будет получаться то, что называется скачком в делении. Если бы мы понятие «природа» разделили на 1) «животные», 2) «растения», 3) «минералы», то в этом делении был бы слишком внезапный переход от понятия «природа» к понятиям «минералы», «животные». Чтобы исправить ошибку, следует вставить между понятием «природа» и членами вышеприведённого деления ещё два посредствующих звена.Именно: понятия «мир неорганический» и «мир органический». Тогда деление приняло бы следующий вид:
Природа: Мир органический: животные
растения
Мир неорганический: минералы и проч.
Вопросы для повторения
Какова задача деления? Что называется делимым понятием? Что называется членами деления? Что такое основание деления? Что такое подразделение? Что такое дихотомия? Его преимущества и недостатки. Перечислите правила деления. Приведите примеры ни каждое правило и укажите применение каждого правила.
Еще по теме Глава VIО ДЕЛЕНИИ:
- Глава VОБ ОПРЕДЕЛЕНИИ
- Глава VIО ДЕЛЕНИИ
- ГЛАВА 6СЕКРЕТЫ ДРЕВНИХ ДИАГНОСТОВ
- ГЛАВА 48. ИНФЕКЦИОННЬЕ ЗАБОЛЕВАНИЯ ВО ВРЕМЯ БЕРЕМЕННОСТИ
- ГЛАВА 2. ОПИСАНИЯ ЛЕКАРСТВЕННМХ СРЕДСТВ |И ДЕИСТВУЮЩИХ ВЕЩЕСТ
- Глава 18Заболевания поджелудочной железы
- ГЛАВА 2. ОПИСАНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТ
- ГЛАВА 58МОЛЕКУЛЯРНАЯ ГЕНЕТИКА И МЕДИЦИН
- Глава 2 РАСПРЕДЕЛЕНИЕ ИНДИВИДУАЛЬНЫХРАЗЛИЧИЙ
- Глава 11 СИСТЕМА ЧЕРТ: ОСНОВНЫЕ РЕЗУЛЬТАТЫ
- Глава 12 УМСТВЕННАЯ НЕПОЛНОЦЕННОСТЬ
- Глава VI О ДЕЛЕНИИ
- Глава 6. Психотерапия наркологических больных И.В.Белокрылое, И.Д.Даренский, И.Н.Ровенских
- Глав^а 8 УХОД ЗА ХИРУРГИЧЕСКИМИ БОЛЬНЫМИ